
© Copyright IBM Corporation 2011 Trademarks
An introduction to the Hadoop Distributed File System Page 1 of 8

An introduction to the Hadoop Distributed File System
Explore HDFS framework and subsystems

J. Jeffrey Hanson February 01, 2011

The Hadoop Distributed File System (HDFS)—a subproject of the Apache Hadoop project—is
a distributed, highly fault-tolerant file system designed to run on low-cost commodity hardware.
HDFS provides high-throughput access to application data and is suitable for applications with
large data sets. This article explores the primary features of HDFS and provides a high-level
view of the HDFS architecture.

HDFS is an Apache Software Foundation project and a subproject of the Apache Hadoop
project (see Related topics). Hadoop is ideal for storing large amounts of data, like terabytes and
petabytes, and uses HDFS as its storage system. HDFS lets you connect nodes (commodity
personal computers) contained within clusters over which data files are distributed. You can then
access and store the data files as one seamless file system. Access to data files is handled in
a streaming manner, meaning that applications or commands are executed directly using the
MapReduce processing model (again, see Related topics).

HDFS is fault tolerant and provides high-throughput access to large data sets. This article explores
the primary features of HDFS and provides a high-level view of the HDFS architecture.

Overview of HDFS
HDFS has many similarities with other distributed file systems, but is different in several respects.
One noticeable difference is HDFS's write-once-read-many model that relaxes concurrency control
requirements, simplifies data coherency, and enables high-throughput access.

Another unique attribute of HDFS is the viewpoint that it is usually better to locate processing logic
near the data rather than moving the data to the application space.

HDFS rigorously restricts data writing to one writer at a time. Bytes are always appended to the
end of a stream, and byte streams are guaranteed to be stored in the order written.

HDFS has many goals. Here are some of the most notable:

• Fault tolerance by detecting faults and applying quick, automatic recovery

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

An introduction to the Hadoop Distributed File System Page 2 of 8

• Data access via MapReduce streaming
• Simple and robust coherency model
• Processing logic close to the data, rather than the data close to the processing logic
• Portability across heterogeneous commodity hardware and operating systems
• Scalability to reliably store and process large amounts of data
• Economy by distributing data and processing across clusters of commodity personal

computers
• Efficiency by distributing data and logic to process it in parallel on nodes where data is located
• Reliability by automatically maintaining multiple copies of data and automatically redeploying

processing logic in the event of failures

HDFS provides interfaces for applications to move them closer to where the data is located, as
described in the following section.

Application interfaces into HDFS
You can access HDFS in many different ways. HDFS provides a native Java™ application
programming interface (API) and a native C-language wrapper for the Java API. In addition, you
can use a web browser to browse HDFS files.

The applications described in Table 1 are also available to interface with HDFS.

Table 1. Applications that can interface with HDFS
Application Description

FileSystem (FS) shell A command-line interface similar to common Linux® and UNIX® shells
(bash, csh, etc.) that allows interaction with HDFS data.

DFSAdmin A command set that you can use to administer an HDFS cluster.

fsck A subcommand of the Hadoop command/application. You can use
the fsck command to check for inconsistencies with files, such as
missing blocks, but you cannot use the fsck command to correct these
inconsistencies.

Name nodes and data nodes These have built-in web servers that let administrators check the
current status of a cluster.

HDFS has an extraordinary feature set with high expectations thanks to its simple, yet powerful,
architecture.

HDFS architecture
HDFS is comprised of interconnected clusters of nodes where files and directories reside. An
HDFS cluster consists of a single node, known as a NameNode, that manages the file system
namespace and regulates client access to files. In addition, data nodes (DataNodes) store data as
blocks within files.

Name nodes and data nodes
Within HDFS, a given name node manages file system namespace operations like opening,
closing, and renaming files and directories. A name node also maps data blocks to data nodes,

ibm.com/developerWorks/ developerWorks®

An introduction to the Hadoop Distributed File System Page 3 of 8

which handle read and write requests from HDFS clients. Data nodes also create, delete, and
replicate data blocks according to instructions from the governing name node.

Figure 1 illustrates the high-level architecture of HDFS.

Figure 1. The HDFS architecture

As Figure 1 illustrates, each cluster contains one name node. This design facilitates a simplified
model for managing each namespace and arbitrating data distribution.

Relationships between name nodes and data nodes
Name nodes and data nodes are software components designed to run in a decoupled manner
on commodity machines across heterogeneous operating systems. HDFS is built using the Java
programming language; therefore, any machine that supports the Java programming language
can run HDFS. A typical installation cluster has a dedicated machine that runs a name node and
possibly one data node. Each of the other machines in the cluster runs one data node.

Communications protocols
All HDFS communication protocols build on the TCP/IP protocol. HDFS clients connect to a
Transmission Control Protocol (TCP) port opened on the name node, and then communicate
with the name node using a proprietary Remote Procedure Call (RPC)-based protocol. Data
nodes talk to the name node using a proprietary block-based protocol.

Data nodes continuously loop, asking the name node for instructions. A name node can't connect
directly to a data node; it simply returns values from functions invoked by a data node. Each
data node maintains an open server socket so that client code or other data nodes can read or
write data. The host or port for this server socket is known by the name node, which provides the
information to interested clients or other data nodes. See the Communications protocols sidebar
for more about communication between data nodes, name nodes, and clients.

The name node maintains and administers changes to the file system namespace.

developerWorks® ibm.com/developerWorks/

An introduction to the Hadoop Distributed File System Page 4 of 8

File system namespace

HDFS supports a traditional hierarchical file organization in which a user or an application can
create directories and store files inside them. The file system namespace hierarchy is similar to
most other existing file systems; you can create, rename, relocate, and remove files.

HDFS also supports third-party file systems such as CloudStore and Amazon Simple Storage
Service (S3) (see Related topics).

Data replication

HDFS replicates file blocks for fault tolerance. An application can specify the number of replicas of
a file at the time it is created, and this number can be changed any time after that. The name node
makes all decisions concerning block replication.

Rack awareness

Typically, large HDFS clusters are arranged across multiple installations (racks). Network
traffic between different nodes within the same installation is more efficient than network
traffic across installations. A name node tries to place replicas of a block on multiple
installations for improved fault tolerance. However, HDFS allows administrators to decide on
which installation a node belongs. Therefore, each node knows its rack ID, making it rack
aware.

HDFS uses an intelligent replica placement model for reliability and performance. Optimizing
replica placement makes HDFS unique from most other distributed file systems, and is facilitated
by a rack-aware replica placement policy that uses network bandwidth efficiently.

Large HDFS environments typically operate across multiple installations of computers.
Communication between two data nodes in different installations is typically slower than
data nodes within the same installation. Therefore, the name node attempts to optimize
communications between data nodes. The name node identifies the location of data nodes by their
rack IDs.

Data organization

One of the main goals of HDFS is to support large files. The size of a typical HDFS block is 64MB.
Therefore, each HDFS file consists of one or more 64MB blocks. HDFS tries to place each block
on separate data nodes.

File creation process

Manipulating files on HDFS is similar to the processes used with other file systems. However,
because HDFS is a multi-machine system that appears as a single disk, all code that manipulates
files on HDFS uses a subclass of the org.apache.hadoop.fs.FileSystem object (see Related
topics).

The code shown in Listing 1 illustrates a typical file creation process on HDFS.

ibm.com/developerWorks/ developerWorks®

An introduction to the Hadoop Distributed File System Page 5 of 8

Listing 1. Typical file creation process on HDFS

 byte[] fileData = retrieveFileDataFromSomewhere();
 String filePath = retrieveFilePathStringFromSomewhere();
 Configuration config = new Configuration(); // assumes to automatically load
 // hadoop-default.xml and hadoop-site.xml
 org.apache.hadoop.fs.FileSystem hdfs = org.apache.hadoop.fs.FileSystem.get(config);
 org.apache.hadoop.fs.Path path = new org.apache.hadoop.fs.Path(filePath);
 org.apache.hadoop.fs.FSDataOutputStream outputStream = hdfs.create(path);
 outputStream.write(fileData, 0, fileData.length);

Staging to commit

When a client creates a file in HDFS, it first caches the data into a temporary local file. It then
redirects subsequent writes to the temporary file. When the temporary file accumulates enough
data to fill an HDFS block, the client reports this to the name node, which converts the file to a
permanent data node. The client then closes the temporary file and flushes any remaining data to
the newly created data node. The name node then commits the data node to disk.

Replication pipelining

When a client accumulates a full block of user data, it retrieves a list of data nodes that contains
a replica of that block from the name node. The client then flushes the full data block to the first
data node specified in the replica list. As the node receives chunks of data, it writes them to disk
and transfers copies to the next data node in the list. The next data node does the same. This
pipelining process is repeated until the replication factor is satisfied.

Data storage reliability

One important objective of HDFS is to store data reliably, even when failures occur within name
nodes, data nodes, or network partitions.

Detection is the first step HDFS takes to overcome failures. HDFS uses heartbeat messages to
detect connectivity between name and data nodes.

HDFS heartbeats

Several things can cause loss of connectivity between name and data nodes. Therefore, each
data node sends periodic heartbeat messages to its name node, so the latter can detect loss of
connectivity if it stops receiving them. The name node marks as dead data nodes not responding
to heartbeats and refrains from sending further requests to them. Data stored on a dead node is no
longer available to an HDFS client from that node, which is effectively removed from the system. If
the death of a node causes the replication factor of data blocks to drop below their minimum value,
the name node initiates additional replication to bring the replication factor back to a normalized
state.

Figure 2 illustrates the HDFS process of sending heartbeat messages.

developerWorks® ibm.com/developerWorks/

An introduction to the Hadoop Distributed File System Page 6 of 8

Figure 2. The HDFS heartbeat process

Data block rebalancing
HDFS data blocks might not always be placed uniformly across data nodes, meaning that the used
space for one or more data nodes can be underutilized. Therefore, HDFS supports rebalancing
data blocks using various models. One model might move data blocks from one data node
to another automatically if the free space on a data node falls too low. Another model might
dynamically create additional replicas and rebalance other data blocks in a cluster if a sudden
increase in demand for a given file occurs. HDFS also provides the hadoop balance command for
manual rebalancing tasks.

One common reason to rebalance is the addition of new data nodes to a cluster. When placing
new blocks, name nodes consider various parameters before choosing the data nodes to receive
them. Some of the considerations are:

• Block-replica writing policies
• Prevention of data loss due to installation or rack failure
• Reduction of cross-installation network I/O
• Uniform data spread across data nodes in a cluster

The cluster-rebalancing feature of HDFS is just one mechanism it uses to sustain the integrity of its
data. Other mechanisms are discussed next.

Data integrity
HDFS goes to great lengths to ensure the integrity of data across clusters. It uses checksum
validation on the contents of HDFS files by storing computed checksums in separate, hidden files
in the same namespace as the actual data. When a client retrieves file data, it can verify that the
data received matches the checksum stored in the associated file.

The HDFS namespace is stored using a transaction log kept by each name node. The file system
namespace, along with file block mappings and file system properties, is stored in a file called

ibm.com/developerWorks/ developerWorks®

An introduction to the Hadoop Distributed File System Page 7 of 8

FsImage. When a name node is initialized, it reads the FsImage file along with other files, and
applies the transactions and state information found in these files.

Synchronous metadata updating

A name node uses a log file known as the EditLog to persistently record every transaction that
occurs to HDFS file system metadata. If the EditLog or FsImage files become corrupted, the
HDFS instance to which they belong ceases to function. Therefore, a name node supports multiple
copies of the FsImage and EditLog files. With multiple copies of these files in place, any change to
either file propagates synchronously to all of the copies. When a name node restarts, it uses the
latest consistent version of FsImage and EditLog to initialize itself.

HDFS permissions for users, files, and directories

HDFS implements a permissions model for files and directories that has a lot in common with
the Portable Operating System Interface (POSIX) model; for example, every file and directory
is associated with an owner and a group. The HDFS permissions model supports read (r), write
(w), and execute (x). Because there is no concept of file execution within HDFS, the x permission
takes on a different meaning. Simply put, the x attribute indicates permission for accessing a child
directory of a given parent directory. The owner of a file or directory is the identity of the client
process that created it. The group is the group of the parent directory.

Snapshots

HDFS was originally planned to support snapshots that can be used to roll back a corrupted HDFS
instance to a previous state. However, HDFS support for snapshots has been tabled for the time
being.

Summary

Hadoop is an Apache Software Foundation distributed file system and data management project
with goals for storing and managing large amounts of data. Hadoop uses a storage system called
HDFS to connect commodity personal computers, known as nodes, contained within clusters over
which data blocks are distributed. You can access and store the data blocks as one seamless file
system using the MapReduce processing model.

HDFS shares many common features with other distributed file systems while supporting some
important differences. One significant difference is HDFS's write-once-read-many model that
relaxes concurrency control requirements, simplifies data coherency, and enables high-throughput
access.

In order to provide an optimized data-access model, HDFS is designed to locate processing logic
near the data rather than locating data near the application space.

developerWorks® ibm.com/developerWorks/

An introduction to the Hadoop Distributed File System Page 8 of 8

Related topics

• The Hadoop wiki provides community input related to Hadoop and HDFS.
• Find free courses on Hadoop fundamentals, stream computing, text analytics, and more at Big

Data University.
• Download IBM InfoSphere Streams and build applications that rapidly ingest, analyze, and

correlate information as it arrives from thousands of real-time sources.
• Wikipedia's MapReduce page is a great place to begin your research into the MapReduce

framework.
• The Hadoop project site contains valuable resources pertaining to the Hadoop architecture

and the MapReduce framework.
• Venture to the CloudStore site for downloads and documentation about the integration

between CloudStore, Hadoop, and HDFS.

© Copyright IBM Corporation 2011
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://wiki.apache.org/hadoop/
http://bigdatauniversity.com/
http://bigdatauniversity.com/
https://www.software.ibm.com/webapp/iwm/web/preLogin.do?source=SWG-STREAMS_TRIAL&S_CMP=web_dw_rt_swd
http://en.wikipedia.org/wiki/MapReduce
http://hadoop.apache.org/
http://kosmosfs.sourceforge.net/
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Overview of HDFS
	Application interfaces into HDFS
	HDFS architecture
	Name nodes and data nodes
	Relationships between name nodes and data nodes
	File system namespace

	Data replication
	Data organization
	File creation process
	Staging to commit
	Replication pipelining

	Data storage reliability
	HDFS heartbeats
	Data block rebalancing
	Data integrity
	Synchronous metadata updating
	HDFS permissions for users, files, and directories
	Snapshots

	Summary
	Trademarks

