
Transitioning into object-oriented
programming using Java
Have you been wanting to learn an object-oriented language? Now's your chance. Get started
with this simple guide, and you'll be on the road to OOP.

By Jeff Hanson

Making the transition from procedural programming to object-oriented (O-O) development?
Want to break into the exploding world of Java? Don't feel alone. Your situation is shared by
thousands of developers. In this series, we will walk you step-by-step through the object-
oriented development process using the Java programming language.

What does it mean for a language to be object-oriented? To be considered truly object-
oriented, a programming language should support the following features:

• Encapsulation—Hiding an implementation
• Polymorphism—The ability to have the same message sent to different objects and have

each different object respond as desired to the message
• Inheritance—The ability to extend existing classes to form specialized classes that

inherit state and behavior from the original class
• Dynamic binding—The ability to send messages to objects without having to know their

specific type when you write your code

Let’s take a look at how Java supports these features and how it offers additional features to
make the transition from procedural programming to object-oriented development a relatively
easy experience.

Object-oriented features in Java
Java is an object-oriented programming (OOP) language released by Sun Microsystems in the
mid-nineties. The current Java Development Kit (JDK) can be downloaded from Sun. Java is an
interpreted language, which means that the source code is compiled into a portable format that
will later be interpreted by a virtual machine each time it’s run, and it’s object-oriented from
the ground up.

Java hides a lot of the complexities and pitfalls of traditional object-oriented programming
languages, such as C++ or Object Pascal, from the programmer. For example, there are no
pointers in Java, reference types are automatically cleaned up for the programmer, and
variables are automatically initialized to a known default state. With the exception of primitive
data types, everything in Java is an object, and object encapsulations are even offered for the
primitive types when needed.

Introducing objects
Objects are software programming entities that represent real-life objects, such as bank
accounts, computer users, buttons on user interfaces, window menus, etc. Objects are defined
by their state and their behavior. For example, a bank account has a state, such as the current
balance, the current owner, the minimum balance allowed, and so on, and it has behavior, such
as withdraw, deposit, balance, etc.

An object's state is defined by variables known only by the object. Java calls these
variables fields or members. Fields are private to the object unless explicitly made available to
other classes by keywords defining their scope. We will leave our discussion about scope for
later.

An object's behavior is defined by its operations. In Java, these operations are known as
methods. Methods can change the state of an object, create new objects, perform utility
functions, and so on.

Classes
A class is an entity that defines how an object will behave and what the object will contain
when the object is constructed, or instantiated. Classes serve as templates that one or more
objects can be created from. Here's the declaration of the ubiquitous HelloWorld application
using Java's object-oriented concepts:

public class HelloWorld
{
 private String helloMsg = "Hello World!";

 public static void main(String[] args)
 {
 HelloWorld hw = new HelloWorld();
 }

 public HelloWorld()
 {
 // Display our "Hello World" message
 System.out.println(helloMsg);
 }
}

The above example defines a template from which real HelloWorld objects can be created. You
will also notice a strange block of code beginning with the line public static void
main(String[] args). This block of code is a method used as the main entry point into our
HelloWorld program, and this is a typical example of how all Java application entry points are
defined. Notice that even this main entry point is encapsulated within a class. In this case, we
encapsulate it within the HelloWorld class. The above example demonstrates the definition of
one class, HelloWorld, one field, helloMsg, and two methods, main and HelloWorld.

The HelloWorld method is a special kind of method known as a constructor. We’ll discuss the
details and differences of regular methods, constructors, and static methods in a future article.

In Java, all source code for a particular class is declared in a source file that has the same name
as the class and has the extension .java. The Java compiler takes your source files and translates
them into a platform-independent, binary format, called bytecodes, and stores these bytecodes
in classes with the same name as the class definition and an extension of .class. You end up
with one class file for each class.

Compiling and running our example
Once you’ve downloaded the JDK from Sun's Web site and installed it on your machine, you are
ready to compile and run Java programs. To compile and run our example, copy and paste
the HelloWorld class into your favorite text editor, save the file as HelloWorld.java, and then,
at a command-line prompt, change the current directory to the directory containing this file. At
this point, you can compile the program by entering the following command at the command-
line prompt:

Windows:
 <Your JDK directory>\bin\javac HelloWorld.java

UNIX or Linux:
 <Your JDK directory>/bin/javac HelloWorld.java

This should create a new file, in the same directory, named HelloWorld.class. To run the
program, enter the following command at the command-line prompt:

Windows:
 <Your JDK directory>\bin\java HelloWorld

UNIX or Linux:
 <Your JDK directory>/bin/java HelloWorld

You should see output on the screen that says Hello World!

Summary
We have touched the surface of object-oriented programming using the Java programming
language. Next time, we’ll dissect our example, add to it, and discuss more about classes,
objects, and some of the other basic concepts of object-oriented programming and their
implementation using Java.

