
Intro to OOP: A closer look at inheritance
and polymorphism
Inheritance and polymorphism are among the most powerful features of object-oriented
programming. See how Java approaches multiple inheritance and polymorphism in this
introductory article on OOP.

By Jeff Hanson

In ”Intro to OOP: Understanding classes and objects,” we discussed the benefits of inheritance
and polymorphism. We explored the concept of extending a base class to define specific
subclasses that inherit the desired behaviors and properties of the base class while overriding
those that don't fit. This approach helps reduce code redundancy and possible bug redundancy.

Now we will look further into inheritance by examining multiple inheritance and how Java
handles it. We will also look at polymorphism through Java’s dynamic binding.

More about inheritance
Some object-oriented languages offer a feature known as "multiple inheritance," which can be
valuable when an object needs to inherit behaviors or properties from more than one base
class. Multiple inheritance can also prove to be tricky in certain situations. For example, let's say
we wanted to define a base class, Animal, and two subclasses of Animal, LandAnimal and
WaterAnimal. Now, we want to define a class encapsulating a frog. A frog is amphibious, so, we
naturally would want to define the class Frog as inheriting from LandAnimal and WaterAnimal.
This would allow Frog to inherit the needed behaviors and properties from both LandAnimal and
WaterAnimal.

This seems simple enough at first glance; however, let's add a property to Animal called,
LivingEnvironment, returned using the method getLivingEnvironment. We’ll assume that
LandAnimal and WaterAnimal both override this method to provide their own specific
implementations. LandAnimal would return Land as its LivingEnvironment property, while
WaterAnimal would return Water as its LivingEnvironment property. Now, when we implement
Frog as a subclass of both LandAnimal and WaterAnimal and we want to get the
LivingEnvironment for Frog, we run into a snag: Does the getLivingEnvironment method of Frog
return Land or Water? The answer depends on how the compiler handles multiple inheritance.

Java does not support multiple inheritance, as defined in the previous paragraph. It does,
however, allow an object to take on multiple personalities using a feature known as an
"interface." The following example demonstrates a possible definition of an interface defining
LandAnimal:

public interface LandAnimal
{
 public int getNumberOfLegs();
 public boolean hasATail();
}

A class that uses an interface adds the phrase “implements <Interface Name>” to the definition
of the class, substituting the actual name of the interface for <Interface Name>." For example,
in Java, we would declare our Frog class in the following manner:

public class Frog extends Animal implements LandAnimal, WaterAnimal

An interface defines no actual functionality; instead, it acts as a contract to users of an object
that implements the interface. The interface guarantees that the object implements the
methods defined by the interface. Also, an object that implements an interface can, at runtime,
be cast to the interface type. For example, using the Frog definition above, and assuming that
LandAnimal defines a method called getNumberOfLegs and WaterAnimal defines a method called
hasGills, an instance of Frog could be cast at runtime to a LandAnimal or WaterAnimal like this:

Frog aFrog = new Frog();
int legCount = ((LandAnimal)aFrog).getNumberOfLegs();
Boolean gillFlag = ((WaterAnimal)aFrog).hasGills();

Notice how the Frog instance can be cast to act as a LandAnimal object even though no actual
LandAnimal object was created. This allows us to refer to an object by any one of its
"personalities" at runtime and is known as "dynamic binding" or "runtime binding."

More about polymorphism
Polymorphism in Java is made possible by dynamic binding, which refers to the mechanism
used by Java to select a method or object to invoke at runtime. Overloading defines a special
kind of polymorphism, and in Java, it’s demonstrated when two or more methods of a class
have the same name but have different parameter lists or "signatures." A method's signature
refers to the method's name and the number and types of its parameters. Every method of a
particular class has a unique signature relevant to the class. A class can have multiple methods
with the same name as long as the parameter list for each method is unique. For example, we
could define two methods in our Animal class with the name getHello using one method to
retrieve the sound the animal normally makes and the other method to retrieve the sound the
animal makes when scared or comforted. We will give each method a unique signature as
follows:

public String getHello();
public String getHello(int mood);

Now, let’s put into practice some of the concepts we have talked about by modifying our
example program:

public class HelloWorld
{
 public static void main(String[] args)
 {
 Dog animal1 = new Dog();
 Cat animal2 = new Cat();
 Duck animal3 = new Duck();

 System.out.println("A dog says " +animal1.getHello()
 +", when scared says: "
+animal1.getHello(Animal.SCARED)
 +", is carnivorous: "
+animal1.isCarnivorous()
 +", is a mammal: " +animal1.isAMammal());
 System.out.println("A cat says " +animal2.getHello()
 +", when comforted says: "
+animal2.getHello(Animal.COMFORTED)
 +", is carnivorous: "
+animal2.isCarnivorous()
 +", is a mammal: " +animal2.isAMammal());
 System.out.println("A duck says " +animal3.getHello()
 +", when scared says: "
+animal3.getHello(Animal.SCARED)
 +", is carnivorous: "
+animal3.isCarnivorous()
 +", is a mammal: " +animal3.isAMammal());
 }
}

abstract class Animal
{
 public static final int SCARED = 1;
 public static final int COMFORTED = 2;

 public boolean isAMammal()
 {
 return(true);
 }

 public boolean isCarnivorous()
 {
 return(true);
 }

 abstract public String getHello();
 abstract public String getHello(int mood);
}

interface LandAnimal
{
 public int getNumberOfLegs();
 public boolean hasATail();
}

interface WaterAnimal
{
 public boolean hasGills();

 public boolean laysEggs();
}

class Dog extends Animal implements LandAnimal
{
 // methods that override superclass's implementation
 public String getHello()
 {
 return("Bark");
 }

 public String getHello(int mood)
 {
 switch (mood) {
 case SCARED:
 return("Growl");
 case COMFORTED:
 return("");
 }

 return("Bark");
 }

 // Implementation of LandAnimal interface
 public int getNumberOfLegs()
 {
 return(4);
 }

 public boolean hasATail()
 {
 return(true);
 }
}

class Cat extends Animal implements LandAnimal
{
 // methods that override superclass's implementation
 public String getHello()
 {
 return("Meow");
 }

 public String getHello(int mood)
 {
 switch (mood) {
 case SCARED:
 return("Hiss");
 case COMFORTED:
 return("Purr");
 }

 return("Meow");
 }

 // Implementation of LandAnimal interface
 public int getNumberOfLegs()
 {
 return(4);
 }

 public boolean hasATail()
 {

 return(true);
 }
}

class Duck extends Animal implements LandAnimal, WaterAnimal
{
 // methods that override superclass's implementation
 public String getHello()
 {
 return("Quack");
 }

 public String getHello(int mood)
 {
 switch (mood) {
 case SCARED:
 return("Quack, Quack, Quack");
 case COMFORTED:
 return("");
 }

 return("Quack");
 }

 public boolean isAMammal()
 {
 return(false);
 }

 public boolean isCarnivorous()
 {
 return(false);
 }

 // Implementation of WaterAnimal interface
 public boolean hasGills()
 {
 return(false);
 }

 public boolean laysEggs()
 {
 return(true);
 }

 // Implementation of LandAnimal interface
 public int getNumberOfLegs()
 {
 return(2);
 }

 public boolean hasATail()
 {
 return(false);
 }
}

The output from our program when executed should appear as follows:

A dog says Bark, when scared says: Growl, is carnivorous: true, is a mammal: true
A cat says Meow, when comforted says: Purr, is carnivorous: true, is a mammal: true
A duck says Quack, when scared says: Quack, Quack, Quack, is carnivorous: false, is
a mammal: false

Summary
The combination of inheritance, polymorphism, and interfaces provides a powerful set of
programming tools, allowing us to reuse code, isolate occurrences of bugs, and take advantage
of runtime/dynamic binding. In our next article, we will discuss how to control the exposure of
our methods and properties using Java's scope/visibility rules.

