
ptg31978834

From the Library of John Jeffrey Hanson

ptg31978834

Mashups

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

Mashups
Strategies for the Modern Enterprise

J. Jeffrey Hanson

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of John Jeffrey Hanson

ptg31978834

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Hanson, J. Jeffrey.
Mashups : strategies for the modern enterprise / J. Jeffrey Hanson.

p. cm.
Includes index.
ISBN 978-0-321-59181-4 (pbk. : alk. paper) 1. Software engineering. 2. Mashups

(World Wide Web) 3. Web site development. I. Title.

QA76.758.H363 2009
006.7—dc22

2009004655

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-59181-4
ISBN-10: 0-321-59181-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2009

Editor-in-Chief
Mark L. Taub

Acquisitions Editor
Trina MacDonald

Editorial Assistant
Olivia Basegio

Development Editor
Michael Thurston

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Copy Editor
Geneil Breeze

Indexer
Michael Loo

Proofreader
Linda Begley

Cover Designer
Chuti Prasertsith

Compositor
Rob Mauhar

From the Library of John Jeffrey Hanson

ptg31978834

I want to dedicate this book to my children and grandchildren,
and to Sandy, for being there when I needed you.

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

vii

Contents

Preface . xv

Acknowledgments . xix

About the Author . xxi

Introduction . 1

Web 1.0 to Web 2.0 to Web 3.0 . 1
Overview of Mashup Technologies . 2
Enterprise Mashup Technological Domains 5
Considerations Unique to the Enterprise Mashup Domain 6
Solving Technological Problems . 8
Structuring Semantic Data . 10
Effective Design Patterns . 11
Unique Security Constraints . 12
Conceptual Layers of an Enterprise Mashup 14

Presentation Layer . 14
Data Layer . 15
Process Layer . 15

Using REST Principles for Enterprise Mashups 17
Emerging Mashup Standards . 18
Solving Business Problems . 21
Summary . 22

Chapter 1: Mashup Styles, Techniques, and Technologies 25

Determining the Technological Domain for a Mashup 25
Presentation-Oriented . 26
Data-Oriented . 27
Process-Oriented . 28

Choosing a Mashup Style . 28
Pros and Cons of Presentation-Oriented Mashups 28
Pros and Cons of Data-Oriented Mashups 30
Pros and Cons of Process-Oriented Mashups 32

Presentation-Oriented Mashup Techniques 33
Mashing Presentation Artifacts . 34

From the Library of John Jeffrey Hanson

ptg31978834

viii CONTENTS

Mashing Presentation Data . 34
Using AJAX and the XMLHttpRequest Object 35
Sidestepping the Browser Security Sandbox 39

Data-Oriented Mashup Techniques . 40
Mashing Data In-Process . 40
Mashing Data Out-of-Process . 44

Process-Oriented Mashup Techniques . 45
Hybrid Mashups . 46
Implementing a Simple Mashup . 47
Summary . 52

Chapter 2: Preparing for a Mashup Implementation 53

Unique Considerations for Mashups . 53
Determining Requirements and Constraints 55

Presentation Layer . 55
Data Layer . 61
Process Layer . 62

Preparing Your Security Infrastructure . 64
Presentation Layer . 66
Data Layer . 68
Process Layer . 69

Preparing Your Governance Infrastructure 70
Presentation Layer . 71
Data Layer . 72
Process Layer . 72

Preparing for Stability and Reliability . 73
Presentation Layer . 73
Data Layer . 74
Process Layer . 74

Preparing for Performance . 75
Presentation Layer . 75
Data Layer . 76
Process Layer . 76

Preparing Your Data Infrastructure . 77
Presentation Layer . 77
Data Layer . 80
Process Layer . 86

Preparing Your Implementation Strategy . 86
Presentation Layer . 87

From the Library of John Jeffrey Hanson

ptg31978834

CONTENTS ix

Data Layer . 88
Process Layer . 89

Preparing a Testing and Debugging Strategy 90
Presentation Layer . 91
Data Layer . 92
Process Layer . 92

Building a Simple Mashup . 93
Registering with Service-API and UI Artifact Providers 93
Normalizing Data to RDF . 94
Converting RDF and XML to JSON . 95

Summary . 96

Chapter 3: Creating an Enterprise Mashup . 97

Solving Enterprise Problems with a Mashup Infrastructure 97
Potential Uses of Mashups for Your Enterprise 99
Uses of Mashups for Specific Enterprises 100
Determining Relevant Application Patterns for Your Mashups . . 101
Identifying Sources of Information for Your Enterprise Mashups 102
Identifying Services for Your Enterprise Mashups 102
Enterprise Mashup Design Tips . 103
Building the Foundation for an Enterprise Mashup Infrastructure 104

Implementing Infrastructure Layers Using OSGi 104
The Kernel Daemon . 106
The Mashup Infrastructure Kernel Using OSGi 109
The Service Poller . 119

Summary . 123

Chapter 4: Fundamental Concerns for Enterprise Mashups 125

Structuring and Managing Information . 125
XML . 127
JSON . 127
RSS and Atom . 127

Data Mediation . 128
Logging . 130
Auditing . 130

Management and Monitoring . 130
Mashup Application and Infrastructure Administration 132

Managing Mashup Configurations . 132
Mashup Administration Consoles . 134

From the Library of John Jeffrey Hanson

ptg31978834

x CONTENTS

Governance in a Mashup Infrastructure . 134
Interfaces and APIs for Services, Resources, and UI Components 137

UI Component Interfaces . 137
Service Interfaces . 137
Resource Interfaces . 138

Building Mediation and Monitoring Frameworks for Mashups . . 139
The Mediation Framework . 139
The Monitoring Framework . 151

Summary . 162

Chapter 5: Enterprise Mashup Patterns . 165

An Introduction to Patterns . 165
The Importance of Patterns within a Mashup Infrastructure 166
Core Activities of a Mashup . 167

Publishing and Promoting Content and Artifacts 167
Semantic Formats and Patterns for Data Access and Extraction 168
Semantic Formats and Patterns for Data Transfer and Reuse 168
Patterns and Methods for Data Presentation 168
Patterns and Methods for Scheduling and Observation 169
Content Reuse with Clipping . 170
Normalizing Content Using Data/Content Augmentation

Patterns . 170
Assembling a Canvas of Mashup Components 170
Patterns and Purposes for Notifications and Alerts 171

Types of Mashup Patterns . 172
UI Artifact Mashup Pattern . 172
Presentation Layer Mashup Pattern . 173
Process Layer Mashup Pattern . 174
Data Layer Mashup Pattern . 175
Alerter Pattern . 175
Time Series Pattern . 176
Super Search Pattern . 178
Feed Factory Pattern . 179
Workflow Pattern . 180
Pipes and Filters Pattern . 181
Data Federation Pattern . 181
Software as a Service (SaaS) Pattern . 182

From the Library of John Jeffrey Hanson

ptg31978834

CONTENTS xi

Applying Patterns to an Enterprise Mashup Infrastructure 183
Time Series Framework . 184
Workflow Framework . 190

Summary . 202

Chapter 6: Applying Proper Techniques to Secure a Mashup 203

An Overview of Web Application Security 203
The Need for Security in a Mashup . 204
Enterprise Mashup Security Guidelines . 205
Securing Input Data with Validation Techniques 208
Escaping Special Characters to Avoid Dynamic Exploits 208
Defending against Session Fixation . 210
Preventing Cross-Site Request Forgery Attacks 211
Securing On-Demand JavaScript . 213
Securing JSON . 214
Sanitizing HTML . 217
Securing iframes . 218
Authentication and Authorization . 220
Applying Security to a Mashup Infrastructure 221

Validation Framework . 222
Secure JSON Framework . 232

Summary . 239

Chapter 7: Step-by-Step: A Tour through a Sample Mashup 241

Building the Mashup Presentation Layer 241
Building the Mashup Infrastructure Foundation 251

Starting the OSGi Kernel . 251
OSGi Kernel Initialization . 252
OSGi Kernel Lifecycle . 254

Building the Mashup Process Layer . 256
OSGi Kernel Service Methods . 256
Front Controller Servlet and the Service Cache 260
Service Implementations . 263
Bundling Services . 269
Dynamically Invoking Service Logic . 271
The Bundle Poller . 274

Building the Mashup Data Layer . 278
The Resource Cache . 279

From the Library of John Jeffrey Hanson

ptg31978834

xii CONTENTS

The Resource Cache HTTP Adapter . 286
Summary . 291

Chapter 8: Commercial Mashups and Tools for Building Mashups 293

Tools for Building Mashups . 293
JackBe Presto Enterprise Mashup Platform 293
Pentaho Google Maps Dashboard . 296
Serena’s Business Mashups for Oracle 298
Salesforce AppExchange . 301
Kapow Mashup Server . 305
Systemation Corizon . 308
Attensa Managed RSS Platform . 309
Denodo Platform . 311
FlowUI RIA Enterprise Mashup Framework 314

Commercial Mashups . 317
Arrowpointe Maps . 317
Zmanda Internet Backup to Amazon S3 317
Big Contacts . 318
Redfin . 319

Summary . 320

Chapter 9: Mashup Forecasts and Trends . 321

Solving Problems with Enterprise Mashups 321
Building an Open, Agile Mashup Environment 324

Enterprise Mashup Environment Considerations 324
OpenSocial, Facebook, MySpace, and Other Social Platforms 326

Mobile and SDK-Related Mashups . 331
Android Platform . 333
iPhone OS . 335
Windows Mobile . 337
Java J2ME . 338

Business Process Management for Mashups 340
Desktop/Web Hybrid Mashups . 341

Adobe AIR . 341
Google Gears . 342
Windows Gadgets . 342

Summary . 343

From the Library of John Jeffrey Hanson

ptg31978834

CONTENTS xiii

Appendix: Mashup Servers, Technologies, APIs, and Tools 345

Mashup Servers . 345
Presto Mashup Server . 345
WSO2 Mashup Server . 346
Kapow Mashup Server . 348

Mashup Technologies and Techniques . 351
HTML/XHTML . 351
XML . 352
AJAX . 353
Screen Scraping . 355
REST . 355
RDF . 356
RSS and Atom . 356
JSON . 357
On-Demand JavaScript . 357
Flash . 358
Widgets and Gadgets . 359

Mashup APIs . 359
OpenSocial API . 359
Facebook APIs . 359
Amazon Associates Web Service APIs 360
Flickr APIs . 360
eBay APIs . 361
YouTube APIs . 362

Mashup Editors . 363
Yahoo! Pipes . 363
Google Mashup Editor . 364
Microsoft Popfly . 365
IBM Mashup Starter Kit . 366
DreamFace Interactive . 366
Intel’s Mash Maker . 366
Lotus Mashups . 366

Summary . 367

Index . 369

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

xv

Preface

In this book I introduce you to a trend in software engineering that will perme-
ate several areas of software development for many years to come. This trend is
referred to as “mashups,” and in this book I discuss the concepts of mashup
implementations as they affect the enterprise.

The discussions and projects started while writing this book will continue to
be a work in progress as the mashup landscape evolves.

I chose the topic of mashups for this book because I am excited to see the
things that are being done with mashup development and to see this excitement
starting to crop up in the enterprise as organizations begin to adopt a mashup
development mindset. Companies such as JackBe, IBM, Microsoft, Yahoo!, and
others have developed powerful mashup tools and environments that are begin-
ning to show the power mashups can offer to an enterprise.

I have been privileged for a couple of decades to see many attempts to create
an environment in which existing UI artifacts and processes can be reused with
little or no programming intervention. Mashup development using semantic
technologies, reusable markup-based UI artifacts, and metadata-enabled data
formats has reached the point at which powerful applications and services can
be constructed with existing code, data, and UI components using very little
programming intervention.

Overview of This Book

This book discusses implementation strategies, frameworks, and code samples
for enterprise mashups. The term “mashup” originated from the music industry
to define the technique of producing a new song by mixing together two or
more existing songs. The term has been adopted by the software development
industry to define applications created by mixing user-interface artifacts, pro-
cesses, and/or content from multiple sources, typically using high-level web pro-
gramming languages such as HTML, JavaScript, and others.

A mashup infrastructure enables a development model that can produce new
pages, applications, and services rapidly with very little additional work. The use
and reuse of semantic web technologies, user interface artifacts, and loosely cou-
pled services provide a powerful domain for mashup application development.

From the Library of John Jeffrey Hanson

ptg31978834

xvi PREFACE

Mashups are being created at an almost unprecedented rate for different
consumer and social environments. This trend is starting to spill over into the
enterprise domain due to the power and speed with which development teams
can create new services, applications, and data transformations by exploiting
the agile and dynamic environment of mashup infrastructures. Some of the
more popular, publicly accessible mashups include HousingMaps, TwitterVision,
Big Contacts, Weather Bank, and others.

As mashups begin to migrate to the enterprise, more sophisticated program-
ming languages and constructs become involved. Lower-level concepts also
become involved including data mediation and transformations, interprocess
communications, single sign-on, governance, and compliance to name a few.

This book discusses how developers can create new user interfaces by reus-
ing existing UI artifacts using high-level web page markup and scripting lan-
guages such as HTML and JavaScript. Also discussed is the ability that a
mashup infrastructure gives to developers to integrate disparate data using
semantically rich data formats.

The ideas presented in this book are focused on implementation strategies
using such technologies as XML, Java, JavaScript, JSON, RDF, HTML, RSS,
and others. The discussions presented in this book look at programming and
scripting languages in a generic sense—that is, I do not attempt to address
mashup implementations across all popular frameworks. For example, I do not
delve into how mashups can be implemented using Spring, JSF, Struts, and so
on. However, whenever possible, I do mention some of the more prevalent
frameworks that can be used to address a specific need.

It is my hope that a reader of this book will gain a good understanding of the
main concepts of mashup development, particularly as applied to the enter-
prise. I present code examples and actual working mashups. I seek to provide a
reader with a running start into mashup development for the enterprise.

Target Audience for This Book

This book is intended for use by software/web developers as well as by manag-
ers, executives, and others seriously interested in concepts and strategies sur-
rounding mashups and enterprise mashups. The book strives to serve as an
instructive, reliable introduction to the enterprise mashup arena. I hope that the
book will answer many of the questions that might be asked by those seeking to
gain a good foundation for discovering the world of mashup development. This
book also describes solid business reasons for choosing enterprise mashups:
speed of implementation, quick results, and rapid value-add.

From the Library of John Jeffrey Hanson

ptg31978834

PREFACE xvii

To get the most use of this book, it is advisable that you briefly introduce
yourself to HTML, JavaScript, XML, Java, and the basics of the HTTP proto-
col. However, many of the abstract concepts of mashups and mashup develop-
ment can be garnered from this book without the need of programming skills.

About JSF, Spring, Hibernate, and Other Java
Frameworks

The goal of this book is to present the concepts and techniques for designing
and building enterprise mashups and enterprise mashup infrastructures. Con-
cepts and techniques for mashups and mashup infrastructures are topics broad
enough to discuss without attempting to weave in the specifics of multiple
frameworks such as Spring, JSF, Hibernate, and Struts. Also, many of the con-
cepts and techniques for mashups are currently realized using web page markup
and scripting languages such as HTML and JavaScript. However, where war-
ranted, I highlighted some frameworks that fill a specific niche for tasks such as
transforming data, authentication, manipulating XML, and providing kernel
functionality.

Frameworks such as Spring, JSF, Hibernate, Struts, EJB3, JPA, and others are
very powerful. For example:

• Spring provides libraries and frameworks for building rich web applica-
tions, integrating with BlazeDS, building document-driven web services,
securing enterprise applications, supporting Java modularity, integrating
with external systems, building model-view-controller (MVC) applica-
tions, and others. Spring also includes a popular MVC framework.

• JavaServer Faces (JSF) is a set of APIs and a custom JSP tag library for
building user interfaces for web applications, managing UI-component
state, handling UI events, validating input parameters, defining page navi-
gation, and other tasks.

• Struts is an MVC framework that extends the Java servlet API to allow
developers to build sophisticated web flows using the Java programming
language.

• Hibernate is an object-relational mapping (ORM) framework that allows
developers to map a Java-based object model to relational database tables.

These frameworks are ubiquitous and, of course, useful, and one might
expect to find a discussion of each of them in a book such as this. However,

From the Library of John Jeffrey Hanson

ptg31978834

xviii PREFACE

they are not mashup-oriented in nature at this point and would, therefore,
require the reader to have an in-depth knowledge of each framework to engage
the reader in a coherent discussion as they relate to mashups. With this in mind,
I have chosen to keep my discussions of mashups and the Java programming
language as generic as possible. A detailed discussion of building enterprise
mashups using frameworks such as these deserves a complete book for each.
Some enterprises purposely disallow JavaScript in user interfaces. It is a good
idea to explore JSF tools, such as JBoss Rich Faces, which includes artifacts that
intelligently manage JavaScript availability.

From the Library of John Jeffrey Hanson

ptg31978834

xix

Acknowledgments

During the course of writing this book I have received good advice and ideas on
how to improve it. I thank the many editors and reviewers for that as it has
directed my efforts towards a more relevant and effective result.

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

xxi

About the Author

J. Jeffrey Hanson has more than twenty-two years of experience in the software
industry, including work as senior engineer for the Microsoft Windows port of
the OpenDoc project and lead architect for the Route 66 framework at Novell.
Jeff was an original member of the expert group for JSR 160: Java Management
Extensions (JMX) Remote API. He is currently the CTO for Max International,
LLC, where he directs efforts in building mashup infrastructures to support ser-
vice-oriented and resource-oriented systems within the retail/wholesale industry.
Jeff is the author of numerous articles and books, including .NET versus J2EE
Web Services: A Comparison of Approaches and Pro JMX: Java Management
Extensions, and is coauthor of Web Services Business Strategies and Architec-
tures. Jeff’s software engineering experience spans many different industries,
including mortgage lending, newspaper publishing, word processing, network-
ing infrastructures, retail banking, developer tools, reinsurance, IP filtering, and
retail marketing.

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

1

Introduction

The term “mashup” originated with the technique of producing a new song by
mixing together two or more existing songs. This was most notably referred to
in the context of hip-hop music. Mashup applications are composed of multiple
user interface components or artifacts and/or content from multiple data
sources. In the context of software engineering, the term “mashup” defines the
result of combining existing user interface artifacts, processes, services, and/or
data to create new web pages, applications, processes, and data sets.

Very rapid implementations of new functionality are afforded by mashups
via the use of semantic web technologies, reusable user interface artifacts, and
loosely coupled services. Many different consumer and social spaces use mashups.
However, enterprises are beginning to reap the benefits afforded by a mashup
environment. Mashups create an extremely agile and dynamic design and
implementation environment within the enterprise realm allowing users with
limited technical skills to develop powerful and useful applications and services.

In a mashup environment, users can create new user interfaces by reusing
existing UI artifacts using high-level scripting languages such as HTML and
JavaScript. Mashups also enable users to integrate disparate data very quickly
and easily using semantically rich data formats that don’t require complex program-
ming and middleware technologies. Services and processes are beginning to be
integrated with similar speed and ease using loosely coupled techniques inherited
from the lessons learned from service-oriented architecture (SOA) solutions.

Web 1.0 to Web 2.0 to Web 3.0

Technologies surrounding the presence of an organization or user have taken
two significant steps over time, transitioning from what is sometimes referred
to as “Web 1.0” to what has become known as “Web 2.0.” Web 1.0 began with
the first HTML-based browsers and, even though it still lingers in many web
sites, the Web 1.0 model has evolved rapidly towards a Web 2.0 model.

From the Library of John Jeffrey Hanson

ptg31978834

2 INTRODUCTION

Web 1.0 delivered content in a static manner using HTML markup and sim-
ple HTML forms. Applications written to a Web 1.0 model typically responded
to HTTP requests with entire web page updates created from data pulled from
relational tables and content management systems using standard web applica-
tion programming languages such as Perl, C, C++, Java, and others.

Web 2.0, fueled by ubiquitous access to broadband, originated soon after the
turn of the century and is in some form in most up-to-date web sites and web
applications today. Web 2.0 moves the online experience away from static con-
tent delivery towards a model based on interactive participation, blogging and
RSS feeds, search and tagging, AJAX and partial-page updates, collaboration
and social networking, wikis, online bookmarking and content sharing, and so
on. Web 2.0 turned the Internet into a true application platform. Technologies
surrounding Web 2.0 have led to the enablement of shareable and embeddable
UI artifacts such as widgets, dynamic JavaScript, videos, and HTML snippets.

Web 3.0 is a term that describes the next online evolutionary trend following
the Web 2.0 model. The model for Web 3.0 is emerging as a transformation to a
decentralized and adaptable framework across virtually any type of connected
entity including web browsers, desktops, handheld devices, and proprietary
firmware. Content and functionality are delivered in the Web 3.0 model via on-
demand software as a service (SaaS), cloud computing, open APIs, standard
web-based protocols, and semantically rich data formats. Content is secured
using open, decentralized, security protocols and standards. Web 3.0 is moving
organizations away from proprietary, closed systems to a model that encour-
ages sharing, collaboration, and reuse.

To many, mashups are becoming synonymous with Web 3.0. Mashups are
the embodiment of true open, reusable, web-based components and data. This
concept will certainly change the way organizations do business and yield a
flood of activity towards enterprise mashups.

Overview of Mashup Technologies

Technologies used today to produce a mashup application include HTML snippets,
widgets, dynamic JavaScript, AJAX, and semantic-web formats. Content for a
mashup is retrieved from internal systems as well as third-party web sites. Proto-
cols and data formats include HTTP, HTTPS, XML, SOAP, RDF, JSON, and others.

Mashups are created ad hoc most of the time. However, in the enterprise
realm, mashup applications must take into consideration such things as privacy,
authentication, governance, compliance, and other business-related constraints.

Mashups can combine data from disparate data sources, existing UI arti-
facts, and/or existing software processes or services. The specific design for a

From the Library of John Jeffrey Hanson

ptg31978834

OVERVIEW OF MASHUP TECHNOLOGIES 3

mashup depends on whether the mashup will be visual or nonvisual. In many
cases an enterprise mashup solution will be a combination of data, UI artifacts,
and software processes. The solution might be a combination of nonvisual and
visual efforts.

Ultimately, a mashup application exploits existing data, UI artifacts, and
software processes to create new applications and services that might also be
exploited as components for other mashup efforts. This propagation of reus-
able components or modules is creating a revolutionary atmosphere where
underlying programming frameworks and languages are irrelevant and higher-
level scripting languages, semantics, and UI components are emerging as the
primary application enablers.

Figure I.1 illustrates a shopping-specific mashup application that combines
data gathered from a geocoding site, a wholesaler site, a local database, and a
social networking site. The data is then mashed together inside a browser web
page to form the new application.

Figure I.1 A shopping-specific mashup application combining data within a browser
web page

Web
Browser

A
P

M
L

B
ro

w
se

r
M

ar
ku

p

JSON RSS

Mashup Server Data Local
Data Store

Geocoder
Site

Social
Networking

Site

Wholesaler
Site

From the Library of John Jeffrey Hanson

ptg31978834

4 INTRODUCTION

As shown in Figure I.1 data for a mashup can be retrieved from a number of
different locations and combined within a browser web page to create a new
application or interface. Building a mashup in this scenario typically uses Java-
Script processing and DOM manipulation within the browser page to create the
user interface for the new application.

Mashups can be created using traditional programming languages outside
the browser. Figure I.2 illustrates a shopping-specific mashup application that
combines data gathered from a geocoding site, a wholesaler site, a local data-
base, and a social networking site. The data is then mashed together inside a
mashup server to create the new application.

As shown in Figure I.2 data for a mashup can be retrieved from a number of
different locations and combined within a mashup server to create a new appli-
cation or interface. Building a mashup in this scenario typically uses traditional
programming languages such as Java, PHP, Python, C#, Perl, Ruby, and C++ to
integrate the data. The user interface for the new application is created using
traditional web frameworks such as JSP, ASP, Struts, and others.

Figure I.2 A shopping-specific mashup application combining data within a mashup
server

Web
Browser

Browser Markup

JSON

RSS

D
at

a

Geocoder
Site

Social
Networking

Site

Wholesaler
Site

Local
Data Store

Mashup Server

APML

From the Library of John Jeffrey Hanson

ptg31978834

ENTERPRISE MASHUP TECHNOLOGICAL DOMAINS 5

Enterprise Mashup Technological Domains

Mashup domains depend on what is to be “mashed” together. Generally, three
high-level categories of items can be mashed together—user interface artifacts
(presentation), data, and/or application functionality (processes). This might
include HTML snippets, on-demand JavaScript to access an external API, web
service APIs from one of your corporate servers, RSS feeds, and/or other data to
be mixed and mashed within the application or pages. The implementation style,
techniques, and technologies used for a given mashup depend on this determi-
nation. Once the items are determined, a development team can proceed with
applying languages, processes, and methodologies to the application at hand.

Technologies used to create a mashup also depend on the sources from
which the mashup items will be accessed, the talents a development staff needs
to build the mashup, and the services that need to be created or accessed to
retrieve the necessary artifacts for the mashup.

Mashups rely on the ability to mix loosely coupled artifacts within a given
technological domain. The requirements of the application determine what arti-
facts (UI, data, and/or functionality) are needed to build the mashup.

From a high-level perspective, the technological domain as applied to mashups
can be viewed as presentation-oriented, data-oriented, and process-oriented.
Different languages, methodologies, and programming techniques apply to
each technological domain.

As shown in Figure I.3, mashup categories can be divided according to pre-
sentation artifacts, data, and application functionality/processes.

Certain preparations must be made to design and implement a mashup that
is ready for the enterprise. Primary areas of concern are requirements and con-
straints, security, governance, stability, performance, data, implementation, and
testing. Certain aspects of each area of concern are unique to the environment
of enterprise mashups in respect to other enterprise software disciplines.

Figure I.3 Three primary mashup technological domains

Widgets/Gadgets/Chicklets
JavaScript
CSS
HTML/XHTML
Flash
Applets
ActiveX

Presentation-
Oriented

RSS
Atom
AJAX/XML
JSON
SOAP
Microformats
APML
RDF

Data-Oriented

Java/J2EE
PHP
Python
C#/.NET
Ruby/RoR
Perl
C/C++
MoM, pipes, RPC, etc.

Process-Oriented

From the Library of John Jeffrey Hanson

ptg31978834

6 INTRODUCTION

The requirements and constraints for an enterprise mashup must integrate
with the existing policies and practices of the environment for a company or
enterprise. Identifying the requirements and constraints for a mashup is an evo-
lutionary process, since the environment is bound to be affected by the mashup
community with which it will interact. However, there are some basic require-
ments and constraints of a mashup that can be identified and addressed. As the
mashup evolves these items will evolve or be replaced.

Preparing for enterprise mashup implementations involves a thorough
understanding of the processes and IT landscape unique to a given company
and/or industry. Techniques and technologies used for one company or industry
are generally transferable to another; however, some aspects are unique and
must not be overlooked. In fact, these very points of uniqueness typically create
the most value for an enterprise mashup. Effectively exposing the distinctive
facets of an organization is a primary goal of any online endeavor. Achieving
this goal with a mashup infrastructure can add value in ways that are not even
apparent until a given mashup community is exposed to the resources and arti-
facts you present. Once a community becomes actively involved with your
mashup infrastructure, the infrastructure itself evolves as a result of the com-
munity’s unified creativity. Therefore, it is very important for an organization to
make sure it has certain foundational preparations in place in anticipation of
this creative evolution.

Considerations Unique to the Enterprise Mashup
Domain

An enterprise mashup must heed a more restrictive set of considerations such as
compliance, standards, and security that public domain mashups are often free
to ignore. In addition, a company or enterprise mashup must not expose certain
types of intellectual property and/or protected information. This is similar to
the issues that service-oriented organizations face when exposing service APIs
to the web community. Enterprise mashups face the same issues as well as new
issues related to data and UI artifacts that may be used by the mashup community.

If the promise of mashups is realized and a company or enterprise does expe-
rience a viral wave of activity and popularity due to its mashup environment,
the company or enterprise must be ready to handle the surge of online activity.
This is why preparatory efforts relating to security, performance, and scalability
must be taken to ensure that your infrastructure will handle the surge. Every
aspect of an IT infrastructure should be optimized and modularized to enable
as much flexibility and, therefore, creativity as possible. The atmosphere of a

From the Library of John Jeffrey Hanson

ptg31978834

CONSIDERATIONS UNIQUE TO THE ENTERPRISE MASHUP DOMAIN 7

community-based creative mind can be created; not only in the presentation
domain, but in the data domain and process domain as well if you take the
proper steps to create an infrastructure that supports loosely coupled interac-
tions throughout.

Implicit to a loosely coupled infrastructure hoping to benefit from a viral
community is the importance of the ability of a company or enterprise to moni-
tor and manage the infrastructure effectively. As viral effects take place, it is
inevitable that bottlenecks in the infrastructure will be encountered even after
painstaking efforts are taken in the design and implementation of the infra-
structure. Therefore, it is vital that a potent monitoring and management
framework be in place to identify bottlenecks quickly so that they might be rec-
tified immediately.

As shown in Figure I.4, a typical loosely coupled enterprise architecture
embodies a number of different frameworks from which data, services, pro-
cesses, and user interface components emerge.

The need for an agile security model for an enterprise mashup cannot be
emphasized enough. Since the mashup infrastructure will need to handle
requests and invocations from a vast array of clients and environments, the
mashup infrastructure must be ready to handle many types of identity manage-
ment and access controls. Since it is impossible to know beforehand just how

Figure I.4 Typical loosely coupled enterprise architecture

Process Layer

Protocol
Adapter

Service
Module

Service
Module

data
protocol

security
protocol

security
protocol

data
protocol

Corporate
Data

Data
Layer

DAO

DAO

Security Layer

OAuth
Module

OpenID
ModuleHTTP

HTTP

Web
Page

Web
Browser

request/
response

Corporate
Services

External
Site2

External
Site1

Security
Adapter

From the Library of John Jeffrey Hanson

ptg31978834

8 INTRODUCTION

data modules, UI artifacts, and services will be used by the mashup community,
an organization must have an infrastructure in place that allows it to control
how its information is used without inhibiting creativity.

Being able to support an agile and viral environment is also very important
when it comes to deploying enterprise mashups and the components of the
mashups. Flexible deployment techniques and technologies must be used
throughout the scope of the infrastructure to allow updates and enhancements
to be deployed without affecting the mashup community’s interactions with the
mashup infrastructure. This includes activities related to editing and/or execu-
tion of the mashup artifacts.

Finally, the enterprise mashup and its artifacts must be tested. Testing enter-
prise mashups and mashup artifacts is one of the most important tasks a com-
pany or enterprise must address since the infrastructure and artifacts will be
exposed to such a dynamic and vast community. Methods and techniques for
testing mashups and mashup artifacts must be as agile and dynamic as the envi-
ronment in which they will operate.

Solving Technological Problems

An enterprise mashup infrastructure must present solutions for a very agile and
evolutionary environment. Data sources can change rapidly, services are added
and changed at any given time, presentation technologies are constantly being
integrated with the system, marketing and sales departments are eager to apply
the potential facilitated by the easy UI generation model, and so on.

The dynamic nature of an enterprise mashup environment must be flexible
and powerful enough to handle existing business operations as well as many
new operations that arise out of the dynamic nature of the mashup develop-
ment model.

An enterprise mashup infrastructure can be used to update, access, and inte-
grate unstructured and structured data from sources of all kinds. An enterprise
mashup infrastructure can apply structure to extracted data that was previously
unstructured. Such is the case when structure is applied to an ordinary HTML
page using screen-scraping techniques.

An enterprise mashup infrastructure presents views of existing resources and
data to other applications where they are restructured and aggregated to form
new composite views that may even create new semantic meaning for the com-
posite data and, therefore, for the enterprise itself.

As shown in Figure I.5, an enterprise mashup infrastructure provides a num-
ber of different frameworks and layers from which data, services, processes,
and user interface components are integrated.

From the Library of John Jeffrey Hanson

ptg31978834

SOLVING TECHNOLOGICAL PROBLEMS 9

An enterprise mashup infrastructure helps to solve nonvisual integration
problems as well as visually related problems. Nonvisual integration solutions
enabled using the resource-oriented and semantic nature of an enterprise
mashup infrastructure can be applied directly to specific business problems or
indirectly through the orchestration and aggregation of the reusable compo-
nents presented by the infrastructure.

Addressing mashups in a nonvisual sense relies on accurate and comprehen-
sive organization and structure of information using semantically rich data for-
mats to create an environment where content and data are easily discovered
and reused.

Figure I.5 High-level view of an enterprise mashup infrastructure

Relational
Data Store

Unstructured
Business

Documents

request/
response

Process Layer

Protocol
Adapter

Service
Module

Service
Module

security
protocol

Web
Browser

Mashup
Page

Security Layer

OAuth
Module

OpenID
Module

HTTP

request/
response

data
protocol

Corporate
Mashup
Server

Data
 Layer

Corporate
Data

Server

Corporate Security Server

External
Sites

Security
Adapter

DAO DAO DAO

Secured
ID Storage

From the Library of John Jeffrey Hanson

ptg31978834

10 INTRODUCTION

Structuring Semantic Data

As with any enterprise application environment, enterprise mashup infrastruc-
tures must address some fundamental concerns such as information manage-
ment, governance, and system administration to name a few. In addition to the
typical enterprise application concerns, mashup infrastructures must address an
environment that seeks to fulfill dynamic requirements and flexible solutions to
business issues.

One of the biggest challenges facing an enterprise is that issue of managing
and sharing data from disparate information sources. Legacy mechanisms for
managing and sharing information typically kept data and metadata (data
about the data) separated. Semantic techniques and technologies seek to bridge
the gap between data and metadata to present a more effective means for apply-
ing meaning to information.

Choosing the fundamental format for data within your mashup infrastruc-
ture should be one of the first areas that you address. Mashup infrastructures
derive much of their benefit from being able to apply and present semantic
meaning to data and content. This enables consumers of the data and content
to create aggregate components and content much more easily than traditional
application environments.

Applying semantics to an aggregate repository of corporate information
involves extending typical data stores and content sources to enable the infor-
mation stored within unstructured documents and files with structured mean-
ing, thereby giving the information sources features that enable both machines
and humans with a greater ability to understand the information. Once effec-
tive semantic meaning has been applied to an information source, the data
stored within can be discovered, aggregated, automated, augmented, and
reused more effectively.

As shown in Figure I.6, an enterprise mashup infrastructure can provide
components, modules, and frameworks to transform and enable data with
semantic richness.

Figure I.6 illustrates some of the disparate sources from which corporate
information is stored and how a mashup infrastructure might provide a solu-
tion for structuring the data from these sources with semantic meaning.

When determining a solution for building a semantic foundation, an organi-
zation should turn to formal specifications. These specifications currently
include XML, the Resource Description Framework (RDF), the Web Ontology
Language (OWL), RDF Schema (RDFS), microformats, and others.

From the Library of John Jeffrey Hanson

ptg31978834

EFFECTIVE DESIGN PATTERNS 11

Effective Design Patterns

Software design patterns present tested and proven blueprints for addressing
recurring problems or situations that arise in many different design and devel-
opment scenarios. By defining a design/development solution in terms of a pat-
tern, problems can be solved without the need to rehash the same problem over
and over in an attempt to provide a custom solution each time.

Using design patterns for software development is a concept that was bor-
rowed from architecture as it applied to building homes, workplaces, and cities.
The idea revolved around the concept that looking at problems abstractly pre-
sented common solutions to different architectural problems. The same concept
was applied to software engineering and proved to work equally as well.

Design and implementation efforts of a mashup share many of the same
development issues as traditional software engineering. Therefore, many of the
same techniques and methodologies that provide successful results to tradi-
tional software paradigms work equally as well with mashup development.
Software patterns are one of the most widely used methodologies in traditional
software engineering and are also strongly suggested as a mechanism for
addressing mashup design and development scenarios.

Figure I.6 High-level view of semantically enabled enterprise mashup infrastructure

Sales
Database

Unstructured
Business

Documents

Process Layer

Protocol
Adapter

Service
Module

Service
Module

Web
Browser

Mashup
Page

request/
response

data
protocol

Corporate
Mashup
Server

Data
 Layer

Corporate
Data

Server

DAODAODAO

Semantic
Transformation

Module

Corporate Accounting
Application

From the Library of John Jeffrey Hanson

ptg31978834

12 INTRODUCTION

Since mashups address many different, dynamic scenarios and technologies,
finding any sort of common ground on which to base design and implementa-
tion decisions can be a great help to software practitioners.

Mashups are very data-intensive. Therefore patterns that define common
solutions to the conversion or adaptation of different data formats offer a sub-
stantial benefit to developers. A pattern defining a common solution for enrich-
ing data as the data is transferred from one module to another offers significant
benefits, as well.

Mashups seek to provide rich experiences for client-side users. Therefore,
patterns defining common solutions applied to AJAX, JavaScript, XML, and
CSS can provide benefits to UI developers.

The following is a list of some of the mashup activities for which patterns
can offer useful design help:

• Semantic formats and patterns for data access and extraction

• Semantic formats and patterns for data transfer and reuse

• Patterns and methods for data presentation

• Patterns and methods for scheduling and observation

• Content reuse with clipping

• Data/content augmentation patterns for normalizing content

• Patterns and purposes for notifications and alerts

With many of the processes in a mashup running externally in the Internet
cloud, it is extremely desirable to find common patterns that address issues such
as scalability, security, and manageability within this nebulous environment.

Unique Security Constraints

A mashup development model is very open by definition. This openness intro-
duces many new security risks; therefore, security must be a primary concern
when developing a mashup infrastructure.

Traditional mechanisms such as firewalls and DMZs are not sufficient for
the granularity of access that mashups require for UI artifacts and data. The
mashup infrastructure itself must be prepared to deal with issues such as cross-
site request forgery (CSRF), AJAX security weaknesses, cross-site scripting, and
secure sign-on across multiple domains.

From the Library of John Jeffrey Hanson

ptg31978834

UNIQUE SECURITY CONSTRAINTS 13

The fact that a mashup is a page or application built typically using data
combined from more than one site, illustrates the manner in which security vul-
nerabilities can multiply quickly. As new invocations are added to access
resources or to call service API, new security vulnerabilities become possible. In
addition, external mashups can embed your components and UI artifacts,
thereby combining your functionality and data with components and UI arti-
facts of unknown origin. These wide-open integration possibilities make it
imperative to ensure that your data and functionality are not open to hacker
attempts and other forms of intrusion.

The most common attack scenarios within a mashup environment are cross-
site scripting, JSON hijacking, denial of service attacks, and cross-site request
forgeries.

The intrinsic openness of a mashup environment and the inability to predict
exactly how components of a mashup infrastructure will be used in the future
implies the need to address security at every aspect of the development lifecycle.
Therefore, security must be a primary part of a development team’s code review
and testing processes.

A mashup environment most likely uses components and UI artifacts devel-
oped externally. This means that testing external components must be included
in a development team’s testing process right alongside an organization’s own
components. External components should be tested individually and in aggre-
gate with other components of a given mashup.

One of the most important steps for any organization is to institute best
practices and mashup security policies based on standards established by indus-
try, government, and compliance groups.

When instituting a security policy, an organization should note the following
guidelines:

• Create a thorough security policy.

• Establish a proper authentication and authorization plan.

• Allow for flexibility.

• Employ message-level and transport-level security.

• Implement corporate standards for secure usage patterns.

• Support industry security standards.

From the Library of John Jeffrey Hanson

ptg31978834

14 INTRODUCTION

Conceptual Layers of an Enterprise Mashup

A mashup infrastructure must expose and support programming entities that
can be combined in a mashup. The infrastructure must also address the corre-
sponding issues and solutions for each type of entity. This is modeled as three
high-level categories of items: user interface artifacts (presentation), data
(resources), and/or application functionality (processes). UI artifacts include
such entities as HTML snippets, on-demand JavaScript, web service APIs, RSS
feeds, and/or other sundry pieces of data. The implementation style, techniques,
and technologies used for each category of mashup items present certain con-
straints and subtleties.

Content and UI artifacts used to build a mashup are gathered from a number
of different sources including third-party sites exposing web service APIs, wid-
gets, and on-demand JavaScript. RSS and Atom feeds are also common places
from which mashup content is retrieved. Some tools are now exposing services
that will glean content and information from any existing site using screen-
scraping techniques.

The three-category architecture of mashup web applications is discussed
next.

Presentation Layer

The presentation layer for a mashup can pull from a local service platform,
publicly available APIs, RSS data feeds, dynamic JavaScript snippets, widgets,
badges, and so on. The presentation layer uses technologies and techniques for
viewing disparate data in a unified manner. This unified view integrates UI arti-
facts representing business documents, geocoded maps, RSS feeds, calendar
gadgets, and others.

The presentation layer for an agile and powerful enterprise mashup applica-
tion depends on a modular and flexible infrastructure. The foundation for an
effective enterprise mashup infrastructure is typically structured around a mul-
tilayered platform. The layers for the mashup infrastructure can be imple-
mented as interconnected modules that manage service registrations, service un-
registrations, and service lifecycles.

Since mashups are based on principles of modularity and service-oriented
concepts, a modular technology is warranted that combines aspects of these
principles to define a dynamic service deployment framework facilitating
remote management.

From the Library of John Jeffrey Hanson

ptg31978834

CONCEPTUAL LAYERS OF AN ENTERPRISE MASHUP 15

Data Layer

UI artifacts and processes for a mashup infrastructure rely on content and data
from multiple sources. Content and data are modeled as resources. Resources
can be retrieved using a REST (Representational State Transfer)-based invoca-
tion model. In other words, resources are created, retrieved, updated, and
deleted using a simple syntax that relies on URIs to define the location of each
resource.

A mashup infrastructure should provide a mashup data layer that can access
data from multiple sources perhaps using a REST-based invocation model. The
resources can then be serialized to a mashup application or page in different
semantic formats.

The data layer for a mashup infrastructure combines data in one of two
ways: client-side data integration or server-side data integration, as discussed
next.

Client-Side Data Integration
In client-side data integration, data is retrieved from multiple sites and mixed
together in a client-side application pane or web page typically using scripting
techniques and languages such as JavaScript, AJAX, and DOM manipulation.
In this type of mashup, data is returned from a site or server in the form of
XML, RSS, JSON, Atom, and so on. Much of the data returned originates from
data-oriented services sometimes referred to as Data-as-a-Service (DaaS). DaaS
describes a data-oriented service API that can be called without relying on
third-party processes or components between the service provider and the ser-
vice consumer.

Figure I.7 illustrates data being integrated on the client in a mashup infra-
structure.

Server-Side Data Integration
In server-side data integration, data is retrieved and mixed at the server using
technologies such as Java, Python, Perl, and C++, among others. In this style,
mashup data is retrieved from one or more sites/servers and used as values or
configuration settings to create new data models within a server-side process.

Figure I.8 illustrates data being integrated on the server in a mashup infra-
structure.

Process Layer

Processes in the mashup infrastructure can be encapsulated as independent ser-
vices. Each service can be defined and deployed within the context of a module

From the Library of John Jeffrey Hanson

ptg31978834

16 INTRODUCTION

managed by a service container. Service modules might consist of one or more
services that are deployed automatically to the service container.

The process layer will combine functionality together in one or more aggre-
gate processes using programming languages such as Java, PHP, Python, C++,
and so on. Mashups built for enterprise applications or web applications can
involve frameworks such as JEE, .NET, and Ruby on Rails.

Figure I.7 Client-side data integration

Figure I.8 Server-side data integration

Original
Host

External
Host

External
Host

External
Host

Web
Browser

Web Page

JavaScript,
AJAX, DOM

manipulation,
etc.

Internal Data
Source

External
Host

External
Host

External
Host

Web
Browser

Web Page

Mashup
Server
Data
Layer

data
protocol

Mashup
Server

Process
Layer

UI artifacts over
HTTP/HTTPS

From the Library of John Jeffrey Hanson

ptg31978834

USING REST PRINCIPLES FOR ENTERPRISE MASHUPS 17

In the process layer, functionality is combined using interprocess/interthread
communication techniques such as shared memory, message queues/buses, and
remote procedure calls (RPC), to name a few. The aggregate result of the pro-
cess layer differs from the data layer in that the data layer derives new data
models, whereas the process layer derives new processes and/or services.

Due to the number of disparate sources from which functionality and data
are typically retrieved for an enterprise mashup, enterprises often employ a
hybrid approach when building a mashup infrastructure.

Using REST Principles for Enterprise Mashups

Interactions within an enterprise mashup often involve the exchange of data
from one or more hosts. Data is often referred to as a resource. Therefore, it is
important to provide coherent interfaces for resources exposed by an enterprise
mashup infrastructure. The resource-oriented architecture defined by Roy Tho-
mas Fielding in his Representational State Transfer (REST) dissertation is a
model used by many mashup frameworks and platforms.

REST is a model for interacting with resources using a common, finite set of
methods. For the HTTP protocol, this is embodied in the standard methods GET,
POST, PUT, DELETE, and sometimes HEAD. In a REST-based application or interaction,
resources are identified by a URI. The response for REST-based invocation is
referred to as a representation of the resource.

To help define interfaces for accessing resources in a mashup infrastructure,
an understanding of how the interfaces will be accessed is needed. An examina-
tion of REST-based interactions across the HTTP request/response space can
help to understand the interactions for services and resources in an enterprise
mashup.

• HTTP GET—Retrieves resources identified by URIs (Universal Resource
Identifiers), named in a consistent manner for an organization.

• HTTP POST—Creates a resource identified by the data contained in the
request body. Therefore, to create the resource named myfeed.rss, the URI
shown for the HTTP GET request would be used in an HTTP POST request
along with the additional POST data needed to create the resource.

• HTTP PUT—Updates the resource identified by the request URI using the
data contained in the request body.

• HTTP DELETE—Deletes the resource that is identified by the request URI.

From the Library of John Jeffrey Hanson

ptg31978834

18 INTRODUCTION

In a REST model, content and data are modeled as resources. Resources are
retrieved using a REST-based invocation model—that is, resources are created,
retrieved, updated, and deleted using a simple syntax that relies on URIs to
define the location of each resource.

The significance of REST is being made apparent by the vast number of web
service API providers promoting REST as the invocation model for their APIs.
Many of these same service providers are using semantically rich data formats
such as RDF, RSS, and Atom as responses to service invocations.

With REST being supported by so many API providers, mashup infrastruc-
tures supporting REST-based invocations and semantic data formats will be
highly adaptable to interactions with external hosts and service providers.

Emerging Mashup Standards

Standards for mashup development are just beginning to emerge. In the mean-
time, standards based on open data exchange, semantically rich content, and
open security models are driving mashup implementations.

The following list shows some of the more prominent standards influencing
mashup application development:

• XML (eXtensible Markup Language)—A general-purpose markup lan-
guage for representing data that is easy for humans to read and under-
stand. Data formatted as XML is easy to transform into other formats
using tools that are available in nearly every programming language. XML
supports schema-based validation and is supported by many formal enter-
prise data-format standards. XML supports internationalization explicitly
and is platform and language independent and extensible.

• XHTML (eXtensible HyperText Markup Language)—A standard intro-
duced in 2000 to form an integration of XML and HTML. XHTML
embodies a web development language with a stricter set of constraints
than traditional HTML.

• OpenSocial API—A unified API for building social applications with ser-
vices and artifacts served from multiple sites. The OpenSocial API relies on
standard JavaScript and HTML as the platform languages developers can
use to create applications and services that interconnect common social
connections. OpenSocial is being developed by an extensive community of
development partners. This community partnership is leading to a plat-
form that exposes a common framework by which sites can become

From the Library of John Jeffrey Hanson

ptg31978834

EMERGING MASHUP STANDARDS 19

socially enabled. Some of the sites currently supporting OpenSocial include
iGoogle, Friendster, LinkedIn, MySpace, Ning, Plaxo, Salesforce.com, and
others.

• The Portable Contacts specification—Targeted at creating a standard,
secure way to access address books and contact lists using web technolo-
gies. It seeks to do this by specifying an API defining authentication and
access rules, along with a schema, and a common access model that a com-
pliant site provides to contact list consumers. The Portable Contacts speci-
fication defines a language neutral and platform neutral protocol whereby
contact list consumers can query contact lists, address books, profiles, and
so on from providers. The protocol defined by the specification outlines
constraints and requirements for consumers and providers of the specifica-
tion. The specification enables a model that can be used to create an
abstraction of almost any group of online friends or user profiles that can
then be presented to consumers as a contact list formatted as XML or
JSON data.

• OpenSAM (Open Simple Application Mashups)—A set of open, best prac-
tices and techniques for integrating software as a service (SaaS) applica-
tions into applications to enable simple connectivity between platforms
and applications. OpenSAM is supported by a number of high-profile web
application leaders such as EditGrid, Preezo, Jotlet, Caspio, and others.

• Microformats—An approach to formatting snippets of HTML and
XHTML data to create standards for representing artifacts such as calen-
dar events, tags, and people semantically in browser pages.

• Data portability—Introduced in 2007 by a concerted group of engineers
and vendors to promote and enable the ability to share and manipulate
data between heterogeneous systems. Data in this context refers to videos,
photos, identity documents, and other forms of personal data.

• RSS and Atom—XML-based data formats for representing web feeds such
as blogs and podcasts. RSS and Atom are ideally suited for representing
data that can be categorized and described using channels, titles, items,
and resource links. An RSS or Atom document contains descriptive infor-
mation about a feed such as a summary, description, author, published
date, and other items.

• OPML (Outline Processor Markup Language)—An XML dialect for
semantically defining generic outlines. The most common use for OPML
at this time is for exchanging lists of web feeds between feed-aggregator

From the Library of John Jeffrey Hanson

ptg31978834

20 INTRODUCTION

services and applications. OPML defines an outline as a simple, hierarchi-
cal list of elements.

• APML (Attention Profiling Markup Language)—Seeks to facilitate the
ability to share personal attention profiles so that interests might be easily
shared between users. An Attention Profile is a type of inventory list of the
topics and sources in which a user is interested. Each topic and/or source
in the profile contains a value representing the user’s level of interest.
APML is represented as an XML document containing implicit interests,
explicit interests, source rankings, and author rankings.

• RDF (Resource Description Framework)—A standard built on the notion
that all resources are to be referenced using URIs. RDF also attempts to
promote semantic meaning to data. This idea is central to the mashup
environment, where data is a collection of loosely coupled resources. With
respect to this knowledge, RDF makes a great fit as a universal data model
for the data layer of your mashup infrastructure. RDF describes data as a
graph of semantically related sets of resources. RDF describes data as sub-
ject-predicate-object triples, where a resource is the subject and the object
shares some relation to the subject. The predicate uses properties in the
form of links to describe the relationship between the subject and object.
This interconnecting network of resources and links forms the graph of
data that RDF seeks to define.

• JSON (JavaScript Object Notation)—A JavaScript data format that offers
the advantage of easy accessibility and parsing from within a JavaScript
environment. JSON supports a limited number of simple primitive types
allowing complex data structures to be represented and consumed easily
from standard programming languages.

• OpenID—A free service that allows users to access multiple secured sites
with a single identity. Sites enabled to use OpenID present a form to a user
where the user can enter a previously registered OpenID identifier such as
jdoe.ids.example.com. The login form information is passed on to an
OpenID client library where it is used to access the web page designated by
the OpenID identifier—in this case, http://jdoe.ids.example.com. An
HTML link tag containing a URL to the OpenID provider service is read
from the web page. The site hosting the client library then establishes a
shared secret with the OpenID provider service. The user is then prompted
to enter a password or other credentials. The client library site then validates
the credentials with the OpenID provider service using the shared secret.

From the Library of John Jeffrey Hanson

http://jdoe.ids.example.com

ptg31978834

SOLVING BUSINESS PROBLEMS 21

• OAuth—A protocol for handling secure API authentication by invoking
service invocations on behalf of users. OAuth-enabled sites direct users
and associated OAuth request tokens to authorization URLs where the
users log in and approve requests from the OAuth-enabled sites. OAuth
uses a key, such as an OpenID identifier to enable authentication without
passing around usernames and passwords.

• WS-Security—Specifies extensions to SOAP messaging to ensure message
content integrity and message confidentiality using a variety of security
models such as PKI, SSL, and Kerberos. The WS-Security specification is
the result of work by the WSS Technical Committee to standardize the
Web Service Security (WS-Security) Version 1.0 recommendation. The WS-
Security specification defines message integrity, message confidentiality,
and the ability to send security tokens as part of a message. These defini-
tions are to be in combination with other web service standards, specifica-
tions, and protocols to support a variety of security models and
technologies.

Solving Business Problems

Mashups are beginning to play a big role in the business domain. Some of the
most prominent uses for mashups within the context of a business are emerging
in the space of business process management and IT asset management. The
reason for this lies in the ease in which mashups can be created along with the
reduced investment needed to adopt the technology.

The nature of mashup development is to use existing technologies such as
JavaScript, HTML, XML, and others. This reduces or eliminates the need for
large investments in IT retooling and makes a significant difference on the bot-
tom line of organizational staffing, especially in terms of the money saved on
integration projects.

Since mashups can retrieve data and UI artifacts from multiple sources, they
help to reduce the workload shouldered by a single organization. Mashups pro-
mote reuse by definition; therefore, they also reduce the workload for an orga-
nization by enforcing reuse within the organization.

Mashup efforts across the enterprise are creating applications and services
that complement existing business activities such as business process manage-
ment (BPM), IT asset management, enterprise information services (EIS), and
software as a service (SaaS). How mashups complement business activities can
be seen in the following trends:

From the Library of John Jeffrey Hanson

ptg31978834

22 INTRODUCTION

• BPM—Mashups enable business experts to organize workflow and pro-
cess management activities without relying on highly skilled IT resources,
thereby allowing workflows to be modified as needed to meet business
requirements.

• EIS—Properly architected mashup infrastructures provide semantically
rich data layers that allow disparate data to be integrated from multiple
sources with little or no help from skilled IT staff. In addition, intuitive
user interfaces can be provided using mashup technologies to further sim-
plify the complexities of data integration.

• IT asset management—Mashups enable business users with the power to
wire UI artifacts, processes, and data together in a graphical manner. Fur-
thermore, mashups allow the creation of applications using components
linked to low-level IT functionality. IT asset management is exploiting this
model to provide IT asset management components exposing such func-
tionality as time-series data, resource monitoring, and device deployment,
to name a few.

• SaaS—Mashups flourish in service-oriented and resource-oriented envi-
ronments. As more businesses move towards a mashup model, on-demand
services will become second nature and ubiquitous across the enterprise.
This will lead tool vendors to drive SaaS as a prominent model for distrib-
uting value.

A mashup environment promotes reuse of existing data, UI artifacts, and
software processes to create new applications and services, which might also be
reused as components for other mashups. This model is creating a revolution-
ary atmosphere where underlying programming frameworks and languages are
irrelevant, and higher-level scripting languages, semantics, and UI components
are emerging as drivers for creating new application functionality.

Enterprises are exploiting the mashup revolution in many different ways to
drive down the cost of IT resources and to increase the time-to-market for new
business services.

Summary

Mashups allow rapid implementations of new functionality via the use of
semantic web technologies, reusable user interface artifacts, and loosely cou-
pled services. Mashups are used in many different consumer and social spaces.

From the Library of John Jeffrey Hanson

ptg31978834

SUMMARY 23

However, enterprises are beginning to reap the benefits afforded by a mashup
environment. Mashups are creating an extremely agile and dynamic design and
implementation environment within the enterprise realm allowing users with
limited technical skills to develop powerful and useful applications and services.

Mashups enable users to create new user interfaces by reusing existing UI
artifacts using high-level scripting languages such as HTML and JavaScript.
Mashups also enable users to integrate disparate data very quickly and easily
using semantically rich data formats that don’t require complex programming
and middleware technologies. Services and processes are beginning to be inte-
grated with similar speed and ease using loosely coupled techniques inherited
from the lessons learned from service-oriented architecture (SOA) solutions.

This introduction discussed some of the high-level concepts surrounding
enterprise mashups. In the following chapters I expand on these concepts to
guide you through the design and implementation of mashups and mashup
infrastructures.

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

25

Chapter 1

Mashup Styles, Techniques,
and Technologies

To begin design work on a mashup, you must determine what is to be
“mashed” together. Three high-level categories of items can be mashed
together—user interface artifacts (presentation), data, and/or application func-
tionality (processes). This might include HTML snippets, on-demand Java-
Script to access an external API, web service APIs from one of your corporate
servers, RSS feeds, and/or other data to be mixed and mashed within the appli-
cation or pages. The implementation style, techniques, and technologies used
for a given mashup depend on this determination. Once the items are deter-
mined, your development team can proceed with applying languages, processes,
and methodologies to the application at hand.

In this chapter, I point out some of the most widely used styles, techniques, and
technologies to build mashups for each of the three primary categories or items.

Determining the Technological Domain for a Mashup

Along with determining what is to be mashed, you must also determine the
sources from which the mashup items will be accessed; the style, technologies,
and techniques your staff needs to build the mashup; and what services you
need to build or access to retrieve the necessary artifacts for your mashup.

Mashups rely on the ability to mix loosely coupled artifacts within a given
technological domain. The requirements of the application determine what arti-
facts (UI, data, and/or functionality) will be needed to build the mashup.

From a high-level perspective, the technological domain as applied to mashups
can be viewed as presentation-oriented, data-oriented, and process-oriented.
Different languages, methodologies, and programming techniques apply to
each technological domain.

From the Library of John Jeffrey Hanson

ptg31978834

26 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

As shown in Figure 1.1, mashup categories can be divided according to pre-
sentation artifacts, data, and application functionality/processes. Each of these
categories requires specific skills and programming technologies, as discussed next.

Presentation-Oriented

A presentation-oriented mashup mixes different user interface (UI) artifacts
together to create a new application or page. Typically, this type of mashup
aims to create an application or page displaying UI artifacts in a manner similar
to a conventional portal. That is, each artifact is to be displayed in a separate
small area on an application pane or page in a segregated manner in relation to
the other artifacts. Very little or no interaction takes place between the UI arti-
facts in a presentation-oriented mashup.

Technologies used in a presentation-oriented mashup can include

• Gadgets and widgets—User interface components that can be placed on an
application pane or page independent of other items on the application
pane or page. Legacy definitions of widgets referred to them in a more
fine-grained manner as applied to desktop components, for example, but-
tons, scrollbars, sliders, and toolbars. The definition has been expanded in
relation to web pages and mashups to include components comprised of
more complex and self-contained functionality such as a clock, calculator,
weather information, and so on. Gadgets and widgets may or may not
retrieve data from an external site.

• On-demand JavaScript, JavaScript snippets, and badges—Small sections of
JavaScript code that can be inserted within an application pane or page to
create user interface components. Typically, the JavaScript relies on inter-
action with a web service API that returns data and functionality used to
build the user interface artifact.

Figure 1.1 Three primary mashup technological domains

Widgets/Gadgets/Chicklets
JavaScript
CSS
HTML/XHTML
Flash
Applets
ActiveX

Presentation-
Oriented

RSS
Atom
AjJAX/XML
JSON
SOAP
Microformats
APML
RDF

Data-Oriented

Java/J2EE
PHP
Python
C#/.NET
Ruby/RoR
Perl
C/C++
MoM, pipes, RPC, etc.

Process-Oriented

From the Library of John Jeffrey Hanson

ptg31978834

DETERMINING THE TECHNOLOGICAL DOMAIN FOR A MASHUP 27

• CSS/HTML/XHTML—Snippets that can be inserted to create segregated
user interface components that can be reused without regard to the appli-
cation domain.

• Flash components/Java applets/ActiveX controls—Self-contained user inter-
face components that rely on proprietary container technologies such as a
virtual machine or runtime that is embedded within the application pane
or browser page.

A presentation-oriented mashup is usually the easiest and quickest type of
mashup to build. Since there is little or no interaction between the mashed
items, the mashup developer can simply worry about placing the items on the
application pane or page in the desired location with the desired UI theme.

Data-Oriented

Data-oriented mashups (in-process or out-of-process) involve combining data
from one or more externally hosted sites together in an application pane or web
page typically using scripting techniques and languages such as JavaScript,
JScript, and others. In this type of mashup, data is returned from a site or server
in the form of XML, RSS, JSON, Atom, and so on. Much of the data returned
originates from data-oriented services sometimes referred to as Data-as-a-Service
(DaaS). DaaS describes a data-oriented service API that can be called without
relying on third-party processes or components between the service provider
and the service consumer.

In-Process Data-Oriented Mashups
In-process data-oriented mashups rely on data being mixed together using
application or browser technologies such as JavaScript, AJAX, or the Docu-
ment Object Model (DOM). In this style of mashup data is retrieved from one
or more sites/servers and used as values or configuration settings to build user
interface artifacts within an application process or browser page.

Out-of-Process Data-Oriented Mashups
Out-of-process data-oriented mashups rely on data being mixed together using
technologies such as Java, Python, Perl, C++, XML, and XSLT, to name a few.
In this style of mashup data is retrieved from one or more sites/servers and used
as values or configuration settings to create new data models within a server-
side process or separate client-side process.

From the Library of John Jeffrey Hanson

ptg31978834

28 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Process-Oriented

Process-oriented mashups (out-of-process) involve combining functionality
together in one or more external processes using programming languages such
as Java, PHP, Python, and C++. Mashups built for enterprise applications or web
applications can involve frameworks such as JEE, .NET, and Ruby on Rails.

In a process-oriented mashup, functionality is combined using interprocess/
interthread communication techniques such as shared memory, message queues/
buses, remote procedure calls (RPC), and so on. Even though data is exchanged
between processes and threads in a process-oriented mashup, the end result dif-
fers from a data-oriented mashup in that the data-oriented mashup seeks to
derive new data models, whereas a process-oriented mashup seeks to derive
new processes and/or services.

More often than not, enterprises require a hybrid approach when building a
mashup. This is due to the number of disparate sources from which functionality
and data are retrieved such as geocoding sites, RSS feeds, and corporate data stores.

So, when preparing to build a mashup you must first determine what is to be
mashed, the technological domain in which to build the mashup, and the
sources from which the mashup artifacts will be accessed. With this informa-
tion in hand you can then determine whether your development staff possess
the skills to employ the techniques and technologies needed to build the
mashup. The skills of your staff have a big impact on the decision of which
mashup style you choose. The following section discusses the reasons for choos-
ing different mashup styles and/or domains.

Choosing a Mashup Style

There are some clear reasons for picking one mashup style/domain over
another. Depending on the goal of the mashup, you should weigh the pros and
cons of each mashup style before beginning work.

Pros and Cons of Presentation-Oriented Mashups

Presentation-oriented mashups are popular because they are quick and easy to
build. They rely primarily on data and UI artifacts retrieved from sites using ser-
vice APIs, data feeds, and so on. This model is often referred to as a Software-
as-a-Service (SaaS) model, although many of the artifacts used in this model are
not technically services. Presentation-oriented mashups often require no preau-
thorization, no installation steps, and no other technologies than those found
within any standard web browser.

From the Library of John Jeffrey Hanson

ptg31978834

CHOOSING A MASHUP STYLE 29

It is easy to implement presentation-oriented mashups because you can usu-
ally use services, components, and script libraries that are publicly accessible
without requiring you to install application platforms or tools. In this model,
you can simply embed or include the scripting code or service call right in an
HTML page as needed. Many publicly available scripting components today
allow you to customize the look-and-feel of the UI artifacts that they generate.

Presentation-oriented mashups typically don’t require any service coding or
deployment; all service coding is provided by external processes/sites to be used
by service consumers at will.

Performance is typically quite responsive with presentation-oriented mash-
ups, since all requests are made directly to a service provider or script provider.
This direct-access model eliminates any interactions with an intermediary pro-
cess through which data is retrieved or functionality is derived. However, this
also creates a direct coupling to the service or services that can eventually turn
into broken links, partially drawn pages, and/or slowly drawn pages if one or
more of the services fail or become nonperforming.

Relying on presentation-oriented techniques and technologies, enterprise
mashups can reduce the load that might otherwise be shouldered by one or
more corporate servers. Since requests are made directly between a service or
data consumer and the provider, the use of presentation-oriented techniques
and technologies in at least part of a mashup places the processing burden out-
side the corporate development domain.

One of the biggest challenges with presentation-oriented mashups is attempt-
ing to access services hosted on a site other than the site from which the original
page was retrieved. Most standard web browsers enforce a sandbox security
model in which a given web page is not allowed to access a site/service located
external to the host in which the page originated. This is referred to by a num-
ber of names including the server-of-origin policy, the browser security sandbox,
the same-origin policy, and the same-domain policy.

The browser security sandbox is in place as an attempt to secure sensitive
information and ward off attacks from rogue scripts and components attempt-
ing to violate privacy and security. Figure 1.2 illustrates the browser security
sandbox.

Many mashups employ the use of AJAX to communicate with a server and
retrieve data. AJAX is a technology that uses a standard JavaScript object—
XMLHttpRequest—to pass data from the JavaScript container (browser) to a web
host. AJAX enables web pages to perform in a manner more similar to desktop
applications, for example, less page refreshing and use of dynamic data updat-
ing. However, this dynamic communication model opens the door to malicious
scripts; hence the need for the browser security sandbox. The browser security

From the Library of John Jeffrey Hanson

ptg31978834

30 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

sandbox only allows JavaScript code to use the XMLHttpRequest object to commu-
nicate with the host or domain from which the containing page originated. This
restriction is a major constraint for building mashups. Therefore, alternative
mechanisms are needed if a presentation-oriented mashup is to incorporate
data and services from multiple sites. Alternatives have been developed, specifi-
cally the use of a technique known as “on-demand scripting” or “dynamic
scripting.” This technique, which I talk about in detail later, exploits the incli-
nation of a browser to execute JavaScript as it is encountered in the process of
interpreting an HTML page.

Pros and Cons of Data-Oriented Mashups

Data-oriented mashups present their own set of challenges and benefits. Primar-
ily, a data-oriented mashup must deal with the intrinsic requirement to act as
the data mediator and/or broker. The mashup in this model must take data
from multiple sites and mix it together in a form that will be useful to the
mashup application or page. As a data broker/integrator, the mashup must deal
with multiple data formats and, possibly, communication protocols, such as
office document formats, message queue exchange protocols, and HTTP.

In-Process
Mashing data together within a web browser can be a formidable task.
Depending on the type of data, browser-based scripts and technologies are not
particularly suited for data integration. Most data-mashing techniques per-
formed within a browser involve manipulating XML-based or JSON-based

Figure 1.2 The browser security sandbox

Original
Host

External
Host

External
Host

External
Host

Web
Browser

Original
Web Page access blockedaccess blockedaccess blockedaccess blocked

access blockedaccess blockedaccess blockedaccess blocked

access blockedaccess blockedaccess blockedaccess blocked

access allowed

From the Library of John Jeffrey Hanson

ptg31978834

CHOOSING A MASHUP STYLE 31

(http://json.org/) data using various JavaScript techniques and applying the
results to the web page using DOM manipulation.

Figure 1.3 illustrates the flow of data in an in-process mashup. As illustrated,
data is received from multiple sites/hosts and is processed using scripting tech-
nologies within a browser page.

Out-of-Process
Mashing data together outside a web browser is nothing new. Any web applica-
tion or desktop application framework will provide some form of time-tested
data integration technology. Frameworks for processing plain text, comma-sep-
arated text, XML, relational data, and so forth have been around for decades
and optimized to process heterogeneous data very efficiently. New technologies
built specifically for disparate data integration, such as enterprise service buses,
are also available in this mashup model.

Figure 1.4 illustrates the flow of data in an out-of-process mashup. As illus-
trated in the figure, a mashup server receives data from multiple sites/hosts and
integrates the data using languages, libraries, and frameworks well-suited for
data parsing, assembly, mediation, and so on.

Mashing data out-of-process can typically handle many more data formats
and apply more robust transformations and data-augmentation techniques than
an in-process model.

Figure 1.3 Flow of data in an in-process mashup

Original
Host

External
Host

External
Host

External
Host

Web
Browser

Web Page

JavaScript,
Jscript,

ActionScript,
etc.

data over
HTTP/HTTPS

data over
HTTP/HTTPS

data over
HTTP/HTTPS

data over
HTTP/HTTPS

From the Library of John Jeffrey Hanson

http://json.org/

ptg31978834

32 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Out-of-process data mashing offers the advantage of evaluating the data
payload before returning the result to the mashup client. In this model a
mashup server can monitor a data feed for just the data updates and return the
updates to the client rather than the entire payload.

Data caching at the mashup server and returning results directly to the client
rather than invoking the data request on a remote host is also a benefit of mash-
ing data out-of-process.

Pros and Cons of Process-Oriented Mashups

In a process-oriented mashup, service requests are transmitted from a mashup
client to the mashup server in the same fashion as an out-of-process data-oriented
mashup. So, from the perspective of the mashup client, the process is the same.
However, from the perspective of the mashup server, things change.

A process-oriented mashup server deals with integration of data as well as
integration of services and processes. Just as data can be retrieved from multiple
different internal and external sources in a data-oriented mashup, services and
processes can be invoked on multiple different internal and external service
hosts and/or processes.

As illustrated in Figure 1.5, a process-oriented mashup server deals with inte-
gration of processes and services from many different internal and external pro-
cesses and hosts. Since this situation exists in most standard web application or
server-oriented environments, it is inevitably encountered in most mashup envi-
ronments where any form of processing takes place outside the mashup client
(browser). The pros and cons of this model are also shared with standard ser-

Figure 1.4 Flow of data in an out-of-process mashup

Internal Data
Host

External
Host

External
Host

External
Host

Web
Browser

Web Page

Mashup
Server

Processes

UI artifacts
over

HTTP/HTTPS

data over
local data
protocol

data over
HTTP, FTP, etc.

data over
HTTP, FTP, etc.

data over
HTTP, FTP, etc.

From the Library of John Jeffrey Hanson

ptg31978834

PRESENTATION-ORIENTED MASHUP TECHNIQUES 33

vice-oriented server environments, including the intricacies of IPC, transaction
management, and service availability.

Process-oriented mashups and out-of-process data-oriented mashups allow
you to deal with shared security keys, tokens, credentials, and so on using many
currently available technologies and frameworks such as SAML, OpenID, and
OAuth. Shared security mechanisms are becoming available more and more
from an in-process mashup domain, but server technologies still dominate.
Handling data security at the server level also allows you to incorporate data-
retrieval and security in the same step resulting in fewer hops from client to
server.

Out-of-process, data-oriented mashups and process-oriented mashups allow
data and services to be processed asynchronously, often resulting in a more effi-
cient use of processing power and time. Browser-based concurrency is usually
limited to far fewer calls than server-based concurrency.

Presentation-Oriented Mashup Techniques

When you work with a mashup in the presentation domain, you are con-
strained to an environment that has evolved in a hodge-podge way from pro-
cessing simple text and graphics pages to one that is on the verge of offering as
many or more features as a complex desktop application framework. This
messy evolution has suffered because of the mismatch between the free-natured
needs of the web environment and the restricted nature of the few primary

Figure 1.5 Flow of services and processes in a process-oriented mashup

Internal
Process/
Service

External
Host

External
Host

External
Host

Web
Browser

Web Page

Mashup
Server

Processes

UI artifacts
over

HTTP/HTTPS

interprocess
communication

(IPC)

service
request/response

service
request/response

service
request/response

From the Library of John Jeffrey Hanson

ptg31978834

34 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

browser vendors. Nevertheless, standards and best practices are emerging that
offer sanity to the mess. The following sections discuss some of the popular
techniques and technologies being used to produce mashups in the presentation
domain.

Mashing Presentation Artifacts

The easiest form of presentation-oriented mashup involves aggregation of UI arti-
facts within a web page in a portal-like manner—that is, completely segregated
from each other using discrete areas within a single HTML page. In this model,
UI artifacts such as gadgets, widgets, HTML snippets, JavaScript includes, and
on-demand JavaScript are embedded within an HTML document using layout
elements and techniques such as HTML tables and CSS positioning.

When mashing together UI artifacts in a web page using browser layout tech-
niques, each artifact typically resides in its own separate area, as illustrated in
Figure 1.6

As illustrated in Figure 1.6, a mashup using aggregated UI artifacts refer-
ences one or more web sites from a web page and retrieves UI code that builds
each artifact as a separate component in a separate area on the browser page.

Mashing Presentation Data

A browser page can also build and modify UI artifacts using data retrieved from
multiple sources using such data formats as XML, RSS, Atom, and JSON. In
this model, the data is retrieved from one or more sites and parsed by the

Figure 1.6 Mashed presentation artifacts

Web
Browser

Web Page

On-demand JavaScript

HTML
Snippet

Gadget

Widget Widget

External
Web Site

Service
Platform

Data
Platform

Data StoreService
Code

(Java/J2EE,
Python, PHP,
etc.)

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/HTTPS data protocol

HTTP/HTTPS

From the Library of John Jeffrey Hanson

ptg31978834

PRESENTATION-ORIENTED MASHUP TECHNIQUES 35

browser, and UI artifacts are created or updated using scripting techniques such
as DOM manipulation to alter the resulting HTML document.

Figure 1.7 illustrates the flow of data from service hosts and external sites to a
mashup created by aggregation of data in the presentation domain (browser page).

This model is more complex than mashing together UI artifacts. In this
model, the scripting code that processes the data must be robust enough to han-
dle multiple data formats or restrict the page to accessing services that only sup-
port the formats supported by the page. However, since the scripting code will
be parsing the data to a fine-grained level, the UI can be created and updated to
create a more sophisticated user experience. This model offers more flexibility
at the cost of additional complexity.

Using AJAX and the XMLHttpRequest Object

Asynchronous JavaScript and XML (AJAX) is a set of technologies and tech-
niques used for handling data feeds using JavaScript and for creating dynamic
web pages with a sophisticated look and feel. One feature of AJAX is the use of
JavaScript and CSS techniques to update a UI artifact on a web page without
refreshing the entire page. AJAX also features a JavaScript-based HTTP
request/response framework that can be used within a web page.

The HTTP request/response framework provided by AJAX is enabled by a
component known as the XMLHttpRequest object. This object is supported by most

Figure 1.7 Mashed presentation data

Web
Browser

Web Page

DOM Element

Data processing logic

DOM
Element

DOM
Element

DOM
Element

DOM
Element

External
Web Site

Service
Platform

Data
Platform

Data StoreService
Code

(Java/J2EE,
Python, PHP,
etc.)

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/
HTTPS

Data
protocol

HTTP/HTTPS

From the Library of John Jeffrey Hanson

ptg31978834

36 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

browsers and offers the ability to pass data to an external host and receive data
from an external host using the HTTP protocol. Requests can be made synchro-
nously or asynchronously. Asynchronous AJAX requests are made in the back-
ground without affecting the web page from which the request is made.

The AJAX framework can send and receive virtually any data format. How-
ever, XML-based data and JSON data are the most frequent payloads used for
various reasons discussed elsewhere in this chapter. Once data is received it is
parsed and applied to the page, typically by manipulating the DOM.

Figure 1.8 illustrates the process through which data flows within a web
page using the AJAX framework. As illustrated, when using AJAX, data is
received by the XMLHttpRequest object. UI artifacts can then be created and modi-
fied using the data.

Document Object Model (DOM)
Every JavaScript-enabled web page is represented internally to a browser as an
instance of the W3C Document Object Model (DOM). DOM is a platform-
independent and language-neutral object model for representing XML-based
documents that allows programs and scripts to dynamically access and update
the content, structure, and style of a document.

The HTML DOM is part of the official DOM specification that defines a
standard model for HTML documents. The HTML DOM facilitates accessing
and manipulating HTML elements in a given web page. The HTML DOM pre-
sents web page as a node-based tree structure containing elements, attributes,

Figure 1.8 Presentation data mashup using AJAX

Web
Browser

Web Page

DOM Element

XMLHttpRequest
object

DOM
Element

DOM
Element

DOM
Element

DOM
Element

External
Site

External
Site

Atom over
HTTP/HTTPS

RSS feed over
HTTP/HTTPS

Geocoding XML over
HTTP/HTTPS

JSON over
HTTP/HTTPS

External
Site

External
Site

From the Library of John Jeffrey Hanson

ptg31978834

PRESENTATION-ORIENTED MASHUP TECHNIQUES 37

and text. Every element on a web page (for example, div, table, image, or para-
graph) is accessible as a DOM node. JavaScript allows the manipulation of any
DOM element on a page dynamically. This allows you to perform such opera-
tions as hiding elements, adding or removing elements, and altering their
attributes (color, size, position, and so on).

Listing 1.1 presents a simple HTML document.

Listing 1.1 Simple HTML Document
<html>
<head>
<title>A simple HTML doc</title>
</head>
<body>
 <p>
 This is a simple HTML document.
 </p>

 <img id="image1"
 src="http://example.com/image1.png"
 width="250"
 height="350"/>
</body>
</html>

Listing 1.2 is an example of a JavaScript function that changes the width and
height of the image () element with an id of image1 in the preceding example:

Listing 1.2 JavaScript Manipulation of DOM
function changeImageSize()
{
 var anIMGElement = document.getElementById("image1");
 anIMGElement.width = "400";
 anIMGElement.height = "300";
}

As shown in Listing 1.2, the DOM can be accessed by the global “docu-
ment” variable. With a reference to the document variable, you can traverse the
nodes of the DOM to find any element by name or id.

Extensible Markup Language (XML)
XML (eXtensible Markup Language) is a specification and standard for creating
self-describing markup languages. It is extensible in that it allows you to define
your own elements. It is used extensively in data transformation and integration
frameworks to facilitate the transfer and integration of structured data across
disparate systems and applications. XML is used in many web-enabled environ-
ments as a document annotation standard and as a data serialization format.

From the Library of John Jeffrey Hanson

ptg31978834

38 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Listing 1.3 is an example of a simple XML document.

Listing 1.3 Simple XML Document
<?xml version="1.0" encoding="UTF-8"?>
<contacts>
 <contact>
 <name>John Doe</name>
 <address1>123 anywhere st.</address1>
 <address2>Apt 456</address2>
 <city>Yourtown</city>
 <state>CA</state>
 <zip>12345</zip>
 <country>USA</country>
 </contact>
 <contact>
 <name>Jane Doe</name>
 <address1>456 S 789 W</address1>
 <address2>Suite 987</address2>
 <city>Mytown</city>
 <state>NY</state>
 <zip>54321</zip>
 <country>USA</country>
 </contact>
</contacts>

Presentation-oriented mashups consume XML and XML derivatives returned
from service hosts and web sites. Once XML is received, it is parsed and
applied to a given web page. As XML is parsed, DOM manipulation techniques
are usually applied to update UI artifacts.

JavaScript Object Notation (JSON)
JSON (JavaScript Object Notation) is a simple, string-based, data-interchange
format derived from JavaScript object literals. JSON is very easy for users to
read and write and for JavaScript engines to parse. Strings, numbers, Booleans,
arrays, and objects can all be represented using string literals in a JSON object.

Listing 1.4 is an example of a simple JSON object:

Listing 1.4 JavaScript Object Notation (JSON) Object
{
 'contacts':
 [{
 'name':'John Doe',
 'address1':'123 anywhere st.',
 'address2':'Apt 456',
 'city':'Yourtown',
 'state':'CA',

From the Library of John Jeffrey Hanson

ptg31978834

PRESENTATION-ORIENTED MASHUP TECHNIQUES 39

 'zip':'12345',
 'country':'USA'
 },
 {
 'name':'Jane Doe',
 'address1':'456 S 789 W',
 'address2':'Suite 987',
 'city':'Mytown',
 'state':'NY',
 'zip':'54321',
 'country':'USA'
 }]
}

Presentation-oriented mashups also consume JSON objects returned from
service hosts and web sites. Once a JSON object is received, it must be parsed in
order to apply to a given web page. Since JSON is pure JavaScript, it is easily
parsed using standard JavaScript utilities. As with XML, DOM manipulation
techniques are usually applied to update UI artifacts once a JSON object is
parsed.

Sidestepping the Browser Security Sandbox

Perhaps the biggest challenge in doing a presentation-oriented mashup is con-
tending with the browser security sandbox, which is in place to keep sensitive
information secure. To protect against malicious scripts, most browsers only
allow JavaScript to communicate with the host/server from which the page was
loaded. If a mashup requires access to a service from an external host, there is
no easy way to access it using the XMLHttpRequest object.

When an attempt is made to access a host/server external to the host/server
from which a web page was loaded, an error similar to the following will be
encountered:

Error: uncaught exception: Permission denied to call method XMLHttpRequest.open.

Therefore, a mechanism is needed through which services can be accessed
without violating the browser security sandbox. JSONP provides one solution.

JSON with padding (JSONP) or remote JSON is an extension of JSON
where the name of a JavaScript callback function is specified as an input param-
eter of a service call. JSONP allows for retrieving data from external hosts/serv-
ers. The technique used by JSONP is referred to as dynamic or on-demand
scripting. Using this technique, you can communicate with any domain and in
this way avoid the constraints of the browser security sandbox.

Listing 1.5 is an example of using on-demand JavaScript to retrieve data
from an external site.

From the Library of John Jeffrey Hanson

ptg31978834

40 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Listing 1.5 On-Demand JavaScript
function retrieveExternalData()
{
 var script = document.createElement("script");
 script.src =
 'http://www.example.com/aservice?output=json&
 callback=aJSFunction';
 script.type = 'text/javascript';
 document.body.appendChild(script);
}

Listing 1.5 illustrates how to dynamically add a <script> tag into a page by
manipulating the DOM so that the page can load and call another web site. The
<script> tag executes on-demand and makes the service request to the site speci-
fied. If the service response is in JSONP format the JavaScript interpreter con-
verts the response object into a JavaScript object. When a script element is
inserted into the DOM the JavaScript interpreter automatically evaluates the
script. JSONP responses wrap JSON data in a JavaScript function call using the
name of the callback parameter. The JavaScript function is then called and any
objects defined in the JSONP response are passed.

The following is an example of an evaluated JSONP response:

aJSFunction({ "item 1":"value 1", "item 2":"value 2" });

As shown in the preceding line of code, the response returned from the ser-
vice is formatted as a JSON object wrapped in a JavaScript function call with
the callback parameter name. The script is evaluated and the JavaScript func-
tion is called, completing the service request/response interaction.

Data-Oriented Mashup Techniques

Data can be mashed together in-process or out-of-process. These two domains
typically equate with a web browser and a remote server application, respec-
tively. Many times data will be mashed in a hybrid approach using both in-pro-
cess and out-of-process techniques.

This section discusses in depth some of the techniques used for both in-pro-
cess and out-of-process data mashups.

Mashing Data In-Process

Mashing data in-process involves applying data integration techniques in the
same process as the mashup page. This is typically accomplished with scripting

From the Library of John Jeffrey Hanson

ptg31978834

DATA-ORIENTED MASHUP TECHNIQUES 41

code such as JavaScript and JScript. However, proprietary component technolo-
gies such as Java applets and ActionScript can be used.

During the process of mashing data in this model, a request is made to a ser-
vice and data is returned in the service response. The data is then parsed, pro-
cessed, and applied to UI artifacts in the page. DOM manipulation is typically
used to apply the processed data.

Mashing XML Data In-Process
All standard web browsers expose an XML-parser object to JavaScript that can
be used to load and parse XML data. Each parser reads XML data from a
string; therefore, a string response returned from a service call can be passed to
the XML parser and processed as needed.

In Listing 1.6, an XML parser is created and used to parse the XML docu-
ment string defined previously in Listing 1.3. As each contact item is encoun-
tered, a new paragraph element is created using DOM manipulation, and the
element is added to the web page.

Listing 1.6 Parsing XML Using JavaScript
<script>
function parseXMLData(xmlString)
{
 var xmlDoc;

 if (document.implementation.createDocument)
 {
 // Create the Mozilla DOM parser
 var domParser = new DOMParser();
 // Create the XML document object
 xmlDoc = domParser.parseFromString(xmlString, "text/xml");
 }
 else if (window.ActiveXObject)
 {
 // Create the Microsoft DOM parser
 xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 xmlDoc.async = "false";
 // Create the XML document object
 xmlDoc.loadXML(xmlString);
 }

 // get root node
 var contactsNode = xmlDoc.getElementsByTagName('contacts')[0];

 // traverse the tree
 for (var i = 0; i < contactsNode.childNodes.length; i++)

From the Library of John Jeffrey Hanson

ptg31978834

42 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 {
 var contactNode = contactsNode.childNodes.item(i);
 for (j = 0; j < contactNode.childNodes.length; j++)
 {
 var itemNode = contactNode.childNodes.item(j);
 if (itemNode.childNodes.length > 0)
 {
 var itemTextNode = itemNode.childNodes.item(0);
 var paraEl = document.createElement("p");
 var textEl =
 document.createTextNode(itemNode.nodeName + ":"
 + itemTextNode.data);
 paraEl.appendChild(textEl);
 var bodyEl =
 document.getElementsByTagName("body").item(0);
 bodyEl.appendChild(paraEl);
 }
 }
 }
}
</script>

In the preceding listing a DOM parser is instantiated and is accessed to get
the root node. Each node is then traversed via its child nodes until the desired
text data node is found. Note that there is a different parser used for Microsoft
Internet Explorer and Mozilla.

Mashing JSON Data In-Process
Since JSON is pure JavaScript, a string containing JSON data can simply be
evaluated to create a JavaScript object. Then the JavaScript object can be
accessed using normal JavaScript. For example, suppose that you are working
with a string containing the JSON data shown previously in Listing 1.4. You
can pass that string to the JavaScript eval function as follows:

var jsonObj = eval("(" + jsonString + ")");

This creates a JavaScript object on which we can operate using standard Java-
Script techniques. For example, you can access the name field for the first con-
tact using the following snippet:

jsonObj.contacts[0].name

Typically, you know the structure of the data beforehand. However, you
might not know the length of array data within the structure. In that case, the
JSON object must be traverse and array data parsed dynamically.

In Listing 1.7, a string containing JSON data, as defined previously in Listing
1.4, is evaluated and parsed. As each array element is encountered, a new para-

From the Library of John Jeffrey Hanson

ptg31978834

DATA-ORIENTED MASHUP TECHNIQUES 43

graph element is created using DOM manipulation and the element is added to
the web page:

Listing 1.7 Processing JSON Using JavaScript
function parseJSONData(jsonString)
{
 var jsonObj = eval("(" + jsonString + ")");

 for (var x in jsonObj)
 {
 // ignore properties inherited from object
 if (jsonObj.hasOwnProperty(x))
 {
 if (jsonObj[x] instanceof Array)
 {
 // handle arrays
 for (var i = 0; i < jsonObj[x].length; i++)
 {
 var bodyEl =
 document.getElementsByTagName("body").item(0);

 // create name element
 var paraEl = document.createElement("p");
 var textEl = document.createTextNode("Name: "
 + jsonObj[x][i].name);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create address 1 element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Address 1: "
 + jsonObj[x][i].address1);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create address 2 element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Address 2: "
 + jsonObj[x][i].address2);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create city element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("City: "
 + jsonObj[x][i].city);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

From the Library of John Jeffrey Hanson

ptg31978834

44 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 // create state element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("State: "
 + jsonObj[x][i].state);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create zip element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Zip: "
 + jsonObj[x][i].zip);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create country element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Country: "
 + jsonObj[x][i].country);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);
 }
 }
 }
 }
}

With the ability to parse data returned from a service and to manipulate ele-
ments of the HTML DOM with the parsed data, you can dynamically create
and modify UI artifacts to fit the needs of your mashup.

Mashing Data Out-of-Process

Mashing data out-of process involves applying data integration techniques in a
separate process, typically on a remote host/server. In this mashup model, a
remote software module receives requests from a client and takes the necessary
steps to gather and transform the data needed to formulate a response.

Technologies and techniques in this approach overlap with enterprise data
integration technologies and techniques, the scope of which is beyond this dis-
cussion. However, the following presents a high-level view of some of the more
common approaches to enterprise data transformation and integration cur-
rently in use:

• Brute-force data conversion—This technique involves converting one data
format to another using proprietary conversion tools or a custom byte-for-
byte conversion program. Proprietary applications often offer an exten-
sion framework allowing third parties to build components or plug-ins
that will convert one data format to another.

From the Library of John Jeffrey Hanson

ptg31978834

PROCESS-ORIENTED MASHUP TECHNIQUES 45

• Data mapping—Data mapping involves the creation and application of a
map of data elements between two disparate data models—source and
destination. The map is used by conversion programs to determine how an
element from the source dataset applies to the destination dataset. Extensi-
ble Stylesheet Language Transformations (XSLT) is often used in this
approach to convert XML data from one form to another.

• Semantic mapping—This approach uses a metadata registry containing
synonyms for data elements that can be queried by conversion tools that
use the synonyms as a guide for converting one data element to another.

Process-Oriented Mashup Techniques

A process-oriented mashup involves mashing together services and/or pro-
cesses. Techniques used for this model range from simply combining method
calls in an object to a complex, structured workflow system.

In Figure 1.9, object2 is interacting with a number of different services and
processes. It is interacting with object1 using a standard method call and an
external site using a service call over a web protocol. object2 is also interacting
with an internal workflow system using asynchronous messaging. The results
from these calls are then mashed together to formulate the response that will
ultimately be returned to the mashup client (web page).

Figure 1.9 Process-oriented mashup architecture

Service
Platform

Service
Layer

object1

method
call

object2

External
Site

Internal
Workflow
System

Web
Browser

Web Page

(HTML, CSS,
JavaScript, etc.)

Data
Platform

Data Store

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/HTTPS
data protocol

HTTP/HTTPS
FTP

SMTP

asynchronous
message

asynchronous
response

From the Library of John Jeffrey Hanson

ptg31978834

46 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Hybrid Mashups

In actuality, enterprise mashups usually involve techniques and technologies for
each of the three mashup domains. Widgets, gadgets, or dynamic scripts will be
retrieved using presentation-oriented techniques. Data will be retrieved using
in-process data-oriented techniques. More data will be retrieved on the server
using out-of-process techniques. Services and processes will be aggregated to
formulate responses on the server that will be returned to the mashup client
results from service API requests.

Figure 1.10 illustrates a typical enterprise mashup environment where data
and services are accessed from a web page (in-process) and from the service
platform (on the server, out-of-process). Presentation-oriented techniques, data-
oriented techniques, and process-oriented techniques must all be employed to
handle the needs for this environment.

The techniques and mashup domains discussed in this chapter are discussed
further in subsequent chapters. For now, I demonstrate some of the easier tech-
niques of a presentation-oriented mashup in a small example in the next section.

Figure 1.10 Hybrid mashup architecture

Web
Browser

Web Page

DOM Element

XMLHttpRequest
object

DOM
Element

DOM
Element

DOM
Element

DOM
Element

RSS feed over
HTTP/HTTPS

Service
Platform

Data
Platform

Data Store

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/HTTPS

Service
Layer

object1

method
call

object2

External
Site

External
Site

Internal
Workflow
System

data protocol

HTTP/HTTPS
FTP

SMTP

asynchronous
message

asynchronous
response

From the Library of John Jeffrey Hanson

ptg31978834

IMPLEMENTING A SIMPLE MASHUP 47

Implementing a Simple Mashup

This section demonstrates the application of concepts discussed in this chapter
to create a simple presentation-oriented mashup. Apart from a local service
platform, the sources used for the mashup are publicly available and provide
either a service API, an RSS data feed, or a dynamic script feed. This section
does not discuss issues such as application keys, security, and governance for
this mashup; these topics are discussed in depth in later chapters.

For the sake of complete coverage of the mashup domains discussed, the
mashup will make service calls and retrieve data from external sites as well as a
local service platform that operates around the model illustrated in Figure 1.11.

Figure 1.11 illustrates a service platform that uses only a small number of
primary components to process service and resource requests. The platform
uses the Representational State Transfer (REST) approach (to be discussed
later) for service and resource request/responses. The service platform provides
access to services and uses a simple resource framework to create, retrieve,
update, and delete resources.

The application (shown in Listing 1.8 and in Figure 1.12) allows users to view
disparate data that might be available in a typical enterprise. The data is pre-
sented in a portal-like manner to simplify the layout and UI-management code.
The application integrates a list of corporate documents, a map feed, an RSS

Figure 1.11 Services platform architecture

Resource
Framework

Resource
Adapter

Resource
Cache

Service
Platform

Protocol
Adapter

Service
Cache

Service

data protocol

Service API
Requests

Service API
Responses

Resource

(RDBMS, XML DB,
MoM, file system,
EIS, RSS feed, etc.)

From the Library of John Jeffrey Hanson

ptg31978834

48 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

feed, a calendar gadget, a Twitter counter chicklet, and a Twitter archive list
delivered as RSS.

Listing 1.8 Presentation-Oriented Mashup Using Aggregated UI Artifacts
<html>
<head>
<!-- Include Google Maps Javascript Library -->
<script type="text/javascript" src="http://maps.google.com/maps?file=api&v=1& key=
ABQIAAAA01HpWF7mf2aW91RNaGDc7xTfGML3OZxtDDthfq-aZ1uFtrk9MRS_VWEizymnfki_h89lqU7A0ts2PA">
</script>

<script type="text/javascript">

Figure 1.12 illustrates the final result of the presentation-oriented mashup
example discussed in this section.

The load function in Listing 1.9 retrieves a hard-coded Google map and
applies it to the map div element in the HTML DOM.

Listing 1.9 Applying a Google Map to a Web Page
 function load()
 {
 if (GBrowserIsCompatible())
 {

Figure 1.12 Presentation-oriented mashup example

From the Library of John Jeffrey Hanson

ptg31978834

IMPLEMENTING A SIMPLE MASHUP 49

 // create map component in div with the id = "map"
 var map = new GMap2(document.getElementById("map"));
 // create map components components
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());
 // create center point when map is displayed
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);
 map.openInfoWindow(map.getCenter(),
 "Your Company Here");
 // re-open the info balloon if they close it
 var point = new GLatLng(37.395746, -121.952234);
 map.addOverlay(createMarker(point, 1));
 }
 }

 function createMarker(point, number)
 {
 var marker = new GMarker(point);
 // create clickable point with title for address
 GEvent.addListener(marker, "click", function()
 {
 marker.openInfoWindowHtml("Your Company Here");
 });
 return marker;
 }

 function retrieveExternalData()
 {
 var script = document.createElement("script");
 script.src =
 'http://www.example.com/mashups/someservice';
 script.type = 'text/javascript';
 document.body.appendChild(script);
 }

</script>
</head>
<body onload="load()">

In the example shown in Listing 1.10 a div element is added to contain a list of
corporate documents retrieved from a Google Docs account using dynamic script.

Listing 1.10 Dynamic Script to Show a List of Documents
 <!-- div to hold documents -->
 <div id="docs"
 style="border-style:ridge; position: absolute;
 left: 10px; top: 10px; width:200px; height:930px">
 <script src="http://gmodules.com/ig/ifr?
 url=http://www.google.com/ig/modules/docs.xml

From the Library of John Jeffrey Hanson

ptg31978834

50 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 &up_numDocuments=9&up_showLastEdit=1
 &synd=open&w=180&h=860
 &title=Company+Documents
 &lang=en&country=ALL
 &border=%23ffffff%7C3px%2C1px+solid+%23999999
 &output=js"></script>
 </div>

Listing 1.11 illustrates a div element that will hold the results from the Goo-
gle map retrieval.

Listing 1.11 Element to Contain a Google Map
 <div id="map"
 style="border-style:ridge; position: absolute;
 left: 220px; top: 10px; width:400px; height:300px">
</div>

In Listing 1.12 a div element is added to contain an RSS feed using dynamic
script.

Listing 1.12 Element to Contain an RSS Feed
 <!-- div to hold RSS feed -->
 <div id="feed"
 style="border-style:ridge; position: absolute;
 left: 630px; top: 10px; width:400px; height:300px">
 <script src="http://gmodules.com/ig/ifr?
 url=http://customrss.googlepages.com/customrss.xml
 &up_rssurl=http%3A%2F%2Fwww.javaworld.com%2Findex.xml
 &up_title=CustomRSS
 &up_titleurl=http%3A%2F%2Fcustomrss.googlepages.com
 &up_num_entries=10&up_linkaction=showdescription
 &up_background=E1E9C3&up_border=CFC58E
 &up_round=1&up_fontfamily=Arial
 &up_fontsize=8pt&up_openfontsize=9pt
 &up_itempadding=3px&up_bullet=icon
 &up_custicon=Overrides%20favicon.ico
 &up_boxicon=1&up_opacity=20
 &up_itemlinkcolor=596F3E&up_itemlinkweight=Normal
 &up_itemlinkdecoration=None&up_vlinkcolor=C7CFA8
 &up_vlinkweight=Normal&up_vlinkdecoration=None
 &up_showdate=1&up_datecolor=9F9F9F
 &up_tcolor=1C57A9&up_thighlight=FFF19D
 &up_desclinkcolor=1B5790&up_color=000000
 &up_dback=FFFFFF&up_dborder=DFCE6F
 &up_desclinkweight=Bold&up_desclinkdecoration=None
 &synd=open&w=380&h=240&title=JavaWorld
 &border=%23ffffff%7C3px%2C1px+solid+%23999999
 &output=js"></script>
 </div>

From the Library of John Jeffrey Hanson

ptg31978834

IMPLEMENTING A SIMPLE MASHUP 51

Listing 1.13 shows a div element to contain a Google calendar retrieved
using a JavaScript badge.

Listing 1.13 Google Calendar Element
 <!-- div to hold calendar -->
 <div id="calendar"
 style="border-style:ridge; position: absolute;
 left: 220px; top: 320px; width:810px; height:620px">
 <iframe src="http://www.google.com/calendar/embed?
 src=o78s3eqe3ov403cpuav2bje5ja9j1tp2%40
 import.calendar.google.com&ctz=America/Denver"
 style="border: 0"
 width="800" height="600" frameborder="0" scrolling="no">
 </iframe>
 </div>

Shown in Listing 1.14 is a div element to contain the Twitter counter chicklet.

Listing 1.14 A div Element to Contain a Twitter Chicklet
 <!-- div to hold the Twitter counter chicklet -->
 <div id="chicklet"
 style="border-style:ridge; position: absolute;
 left: 1040px; top: 10px; width:200px; height:40px">
 <a href="http://twittercounter.com/?username=jhanson583"
 title="TwitterCounter for @jhanson583"><img src="http://twittercounter.com/
counter/?username=jhanson583"
 width="88"
 height="26"
 style="border:none;"
 alt="TwitterCounter
for @jhanson583" />
 </div>

Listing 1.15 illustrates the div element to contain the Twitter RSS feed using
dynamic script.

Listing 1.15 Twitter RSS Feed div Element
 <!-- div to hold twitter feed -->
 <div id="ufbadge"
 style="border-style:ridge; position: absolute;
 left: 1040px; top: 60px; width:200px; height:880px">
 <script src="http://pipes.yahoo.com/js/listbadge.js">
 {"pipe_id":"dq0Qhuqp3BG1psChjtzu1g",
 "_btype":"list",
 "pipe_params":{
 "urlRSS":"http:\/\/twitter.com
 \/statuses\/user_timeline\/10852552.rss"},
 "width":"190",
 "height":"870"}

From the Library of John Jeffrey Hanson

ptg31978834

52 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 </script>
 </div>

In Listing 1.16 I add the div element to contain the local RSS feed using
dynamic script.

Listing 1.16 RSS Feed Element
 <!-- div to hold local RSS feed -->
 <div id="localfeed"
 style="border-style:ridge; position: absolute;
 left: 10px; top: 950px; width:1210px; height:200px">
 <script src="http://localhost:8080/mashups/js/rssbadge.js">
 {"urlRSS":"http:\/\/localhost:8080
 \/mashups\/services\/feeds\/zurn.rss"}
</script>
 </div>
</body>
</html>

The mashup in the preceding example illustrates many different techniques
and technologies as applied to a simple presentation-oriented mashup. In the
next chapter I discuss the preparations that need to be made before building an
enterprise mashup.

Summary

In this chapter, I discussed some of the styles, techniques, and technologies that
are used to build mashups for each of the three primary mashup domains—pre-
sentation, data, and process.

I discuss how to determine the domain for your mashup by analyzing the
artifacts and data that are to be mashed. The domain is determined by analyz-
ing user interface artifacts (presentation), data, and/or application functionality
(processes).

The implementation style, techniques, and technologies used for a given
mashup depend on the domain of the mashup determined by the analysis of
artifacts and data. The techniques and technologies also depend on where pro-
cessing will occur—in-process or out-of-process.

Once the domain is determined and the sources for the artifacts and data are
established, you can proceed to apply languages, processes, and methodologies
to the task of designing and building the mashup.

From the Library of John Jeffrey Hanson

ptg31978834

53

Chapter 2

Preparing for a Mashup
Implementation

Before you design and build your mashup, certain preparations must be made.
Primary areas of concern are requirements and constraints, security, gover-
nance, stability, data, implementation, testing, and performance. Certain
aspects of each area of concern are unique to the environment of enterprise
mashups in respect to other enterprise software disciplines, since the develop-
ment model of mashups relies on a high degree of internal and external commu-
nity involvement.

Preparing for enterprise mashup implementations involves a thorough
understanding of the processes and IT landscape unique to a given company
and/or industry. Techniques and technologies used for one company or industry
are generally transferable to another; however, some aspects are unique and
must not be overlooked. In fact, it is this uniqueness that typically creates the
most value for your enterprise mashup. Effectively exposing the distinctive fac-
ets of your company or enterprise is a primary goal of any online endeavor.
Achieving this goal with a mashup infrastructure can add value in ways that are
not even apparent until a given mashup community is exposed to the resources
and artifacts you present. Once a community becomes actively involved with
your mashup infrastructure, the infrastructure itself evolves as a result of the
community’s unified creativity. Therefore, it is very important to make sure you
have certain foundational preparations in place in anticipation of this creative
evolution.

Unique Considerations for Mashups

An enterprise mashup must heed a more restrictive set of considerations such as
compliance, standards, and security that public domain mashups are often free

From the Library of John Jeffrey Hanson

ptg31978834

54 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

to ignore. In addition, a company or enterprise mashup must not expose certain
types of intellectual property and/or protected information. This is similar to
the issues that service-oriented organizations face when exposing service APIs
to the web community. Enterprise mashups face the same issues as well as new
issues related to data and UI artifacts that may be used by the mashup commu-
nity, since an enterprise mashup can be available outside a corporate firewall,
inside a corporate firewall, or a combination of both.

If the benefits of mashups are realized and a company or enterprise experi-
ences a viral wave of activity and popularity due to its mashup environment,
the company or enterprise must be ready to handle the surge of online activity.
This is why preparatory efforts relating to security, performance, and scalability
are taken to ensure that your infrastructure will handle the surge.

Every aspect of your IT infrastructure should be optimized and modularized
to enable as much flexibility and, therefore, creativity as possible. The atmo-
sphere of a community-based creative mind can be created; not only in the pre-
sentation domain, but in the data domain and process domain as well if you
take the proper steps to create an infrastructure that supports loosely coupled
interactions throughout.

Implicit to a loosely coupled infrastructure hoping to benefit from a viral
community is the importance of the ability of a company or enterprise to moni-
tor and manage the infrastructure effectively. As viral effects take place, bottle-
necks in the infrastructure inevitably will be encountered even after painstaking
efforts are taken in the design and implementation of the infrastructure. There-
fore, it is vital that a potent monitoring and management framework is in place
to identify bottlenecks quickly so that they might be rectified immediately.

The need for an agile security model for an enterprise mashup cannot be
emphasized enough. Since the mashup infrastructure will need to handle
requests and invocations from a vast array of clients and environments, the
mashup infrastructure must be ready to handle many types of identity manage-
ment and access controls. Since it is impossible to know beforehand just how
your data modules, UI artifacts, and services will be used by the mashup com-
munity, you must have an infrastructure in place that allows you to control
how your information is used without inhibiting access and creativity.

Being able to support an agile and viral environment is also important when
it comes to deploying enterprise mashups and the components of the mashups.
Flexible deployment techniques and technologies must be used throughout the
scope of the infrastructure to allow updates and enhancements to be deployed
without affecting other users’ interactions with the mashup infrastructure. This
includes activities related to editing and/or execution of the mashup artifacts.

Finally, the enterprise mashup and its artifacts must be tested. Testing enter-
prise mashups and mashup artifacts is one of the most important tasks a com-

From the Library of John Jeffrey Hanson

ptg31978834

DETERMINING REQUIREMENTS AND CONSTRAINTS 55

pany or enterprise must address since the infrastructure and artifacts will be
exposed to such a dynamic and vast community. Methods and techniques for
testing mashups and mashup artifacts must be as agile and dynamic as the envi-
ronment in which they will operate.

In this chapter I discuss the preparations that must be made to create an
infrastructure that is ready to handle the dynamic and viral nature of enterprise
mashups.

Determining Requirements and Constraints

The requirements and constraints for your enterprise mashup must integrate
with the existing policies and practices of the environment for your company or
enterprise. Identifying the requirements and constraints for your mashup is an
evolutionary process, since the environment is bound to be affected by the
mashup community with which it will interact. However, there are some basic
requirements and constraints of your mashup that you can identify and address.
As the mashup evolves these items will evolve or be replaced.

The following sections discuss the issues you must address when determining
the requirements and constraints for your enterprise mashup.

Presentation Layer

Among items to address in the presentation layer are the API/content providers,
the client execution environments, and the types of UI artifacts to be used in the
mashup.

Service API Providers and Content Providers
One of the first items you must address is the source from which content/data
will be accessed or retrieved. The type of content or data determines which
sources will be used. Sources outside your internal environment will be
retrieved from API and content providers that fit the needs of your mashup and
the characteristic of your business. Often the API and content providers are
chosen from a global pool of candidates without a format partnership being
formed. Since one of the driving principles behind the success of mashups is the
ability to provide value without incurring bureaucratic overhead, much of your
content and/or data will be retrieved without any type of contractual arrange-
ments or licensing formalities. This creates a very agile environment, but can
pose risks to your business if you are not careful.

Some API/content providers such as Amazon.com and Google require licens-
ing and/or the use of an application or development key before you can access

From the Library of John Jeffrey Hanson

ptg31978834

56 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

their service APIs or content sites. Therefore, it is important to identify the API/
content providers well in advance and acquire the necessary keys or licensing
clearance.

Many content sources do not expose formal APIs or resource URLs to access
their content or data. In many cases you are forced to extract the data or con-
tent for your mashup using manual processes such as screen scraping. This is
most common when using public domain sites that have not created formal
procedures for accessing their content or data.

Screen Scraping
“Screen scraping” is the process of manually parsing the content of a site page,
extracting the desired data from the page, and applying the data to your page
or process. Once the data has been parsed and extracted, it is refactored into
data structures that fit the semantics of your business and development environ-
ment. An example would be a mashup that uses publicly available data from
government sites in concert with geographical or geopolitical data to create a
site exposing high crime areas or to show trends in housing prices.

Screen scraping is usually used on a temporary basis, since there is no con-
tract relating to programmatic access in place to ensure the prolonged consis-
tency of the site and since some organizations frown on unauthorized scraping
of their content. As a result, it is a fragile mechanism and must be constantly
monitored to address changes that are bound to occur in the structure and/or
availability of the page or site.

In Figure 2.1, the screen-scraping logic for both external sites is tightly coupled
with the components using the scraped data. If either site alters the content or struc-
ture on which the scraping logic relies, the mashup page will be directly affected.

Figure 2.1 Tightly coupled screen scraping

External
Site 2

External
Site 1

Web
Browser

Mashup
Page

(Screen-
scraping logic)

Corporate
Mashup
Server

Process
Layer

Screen-
scraping

logic

REST
service API

HTTP

HTTP

From the Library of John Jeffrey Hanson

ptg31978834

DETERMINING REQUIREMENTS AND CONSTRAINTS 57

To address the fragile nature of screen scraping, you should create an
abstraction layer between your screen-scraping consumer component and the
site or page from which the data will be scraped. With this abstraction layer in
place, you can easily replace the site or page with another site if needs be or if a
more preferable provider is found.

In Figure 2.2, an abstraction layer (data access objects [DAOs]) has been
inserted between the screen-scraping consumer component (service modules)
and the site or page from which the data is to be scraped. With this abstraction
layer in place, if the external sites change, the references to the external sites can
be replaced without affecting the service modules or the mashup page.

Mashup Client Execution Environments
A mashup client can be part of one of a number of different execution environ-
ments including a web browser, PDA, smart phone, and so on.

A mashup client execution environment typically interacts with a mashup
server or content provider over an HTTP connection but is not necessarily
restricted to this protocol. Therefore, mashup providers should be flexible
enough to support different protocols and client execution environments.

Making a mashup infrastructure protocol-agnostic and capable of support-
ing many different clients is a process of building a modular platform with
many layers of abstractions and facades. Logical layers hiding the physical
details of specific pieces of logic and/or execution environments protect the
mashup infrastructure from tight couplings and physical dependencies.

Figure 2.2 Loosely coupled screen scraping

Corporate
Data

Server

Data
Layer

Screen-
scraping

DAO

Screen-
scraping

DAO

Corporate
Mashup
Server

Process
Layer

Service
Module

Service
Module

Web
Browser

Mashup
Page

HTTP

HTTP

External
Site2

External
Site1

data
protocol

data
protocol

REST
service

API

gadget
API

(HTML, CSS,
JavaScript, etc.)

From the Library of John Jeffrey Hanson

ptg31978834

58 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

Part of the process of protecting your mashup infrastructure from dependen-
cies and couplings involves hiding the details of specific locations for content
providers and/or data sources.

In Figure 2.3, an abstraction layer (Protocol Adapter) is placed between the
service modules and the service mashup clients to hide the details of the client
protocols and locations. An abstraction layer is also placed between the service
modules and the external content sites (External Site1 and External Site2) to
hide the details of the data protocols and locations for these sites. With this
framework in place, the service modules are shielded from protocol changes,
location changes, data-source replacements, and other such events.

It is worth noting that since each client execution environment has a unique
performance footprint, assumptions cannot be made about the ability of a cli-
ent environment to handle large payloads or repeated request/response interac-
tions. A pessimistic approach to client-environment capabilities will help to
keep your infrastructure lean and responsive.

User Interface Artifacts
A widget, gadget, badge, or flake (among other names) is a small snippet of
modular UI code that can be embedded within any distinct HTML-based page

Figure 2.3 Abstraction layers for a mashup infrastructure

Corporate
Mashup
Server

Process Layer

Protocol
Adapter

Service
Module

Service
Module

Mashup
Markup

Smart
Phone

data
protocol

data
protocol

Corporate
Data

Server

Data
Layer

DAO

DAO

HTTP

HTTP

External
Site2

External
Site1

Mashup
Page

Web
Browser

request/
response

request/
response

From the Library of John Jeffrey Hanson

ptg31978834

DETERMINING REQUIREMENTS AND CONSTRAINTS 59

and used immediately without additional compilation or deployment. These
reusable pieces of UI functionality are typically constructed from ordinary
HTML, JavaScript, and/or other web markup languages.

UI artifacts such as widgets, allow high-level web developers to quickly and
easily add value to a given HTML page just by embedding a small snippet of
HTML or script code. The appeal of this type of UI enhancement is that it takes
very little programming skill to implement, and many reputable sites are offer-
ing their services via this mechanism. Widgets, gadgets, badges, and/or flakes
are being offered by companies such as Google and Yahoo! to allow functional-
ity such as instant messaging, games, maps, and videos. The downside to using
these types of UI artifacts is that they offer little or no ability to assimilate with
the rest of the page. Therefore, these items are usually used in a portal-like fashion,
occupying a distinct piece of real estate on a page, segregated from other items.

Very little preparation is needed to use a widget, gadget, badge, or flake.
However, make sure that the snippet of code that is to be embedded in your
mashup pages is from a reputable source and can be relied on to respond as you
need. Also, you might be required to obtain a license to redistribute the content.

You should also screen any advertising content that is displayed in the wid-
get, gadget, badge, or flake to be sure that it is in line with the values and style
of your company or enterprise.

AJAX
As discussed in Chapter 1, Asynchronous JavaScript and XML (AJAX) is a set
of technologies and techniques that enable two primary web-development func-
tions: handling client/server requests and responses from within a browser page
and manipulating the browser DOM to create dynamic user interfaces with a
responsive look and feel, such as updating a UI artifact on a web page without
refreshing the entire page.

AJAX techniques enable a UI experience that can be much more responsive
than typical HTML. However, AJAX presents a number of advantages and dis-
advantages for which you must be prepared.

Following are some advantages of using AJAX:

• A communication model with a server using XML as the primary payload
can be enabled.

• A more responsive UI can result due to processing small units of data at a
time.

• Content can be retrieved via multiple connections, thereby possibly speed-
ing up the retrieval process.

From the Library of John Jeffrey Hanson

ptg31978834

60 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

• Parts of a page can be updated in isolation to other parts, thereby reducing
entire page problems due to an error in one section of the page.

• Bandwidth usage can be decreased since only small chunks of data from
specific parts of a page can be transferred at any given time.

Following are some disadvantages of using AJAX:

• AJAX technologies and techniques are not as mature as traditional methods.

• Browser support for AJAX is not quite as secure as traditional methods.

• AJAX frameworks are not yet as mature as traditional methods.

• AJAX requires a more technical programming mindset than traditional
methods, thereby raising personnel costs and reducing the size of the possi-
ble talent pool.

• Since AJAX depends on dynamic data retrieval and UI construction,
search engines cannot process the content as effectively.

• The XMLHttpRequest object that AJAX depends on for its browser-to-server
communication is subject to the browser security sandbox. Therefore, com-
munication to a host other than the originating host is restricted, unless
specific techniques are used to overcome the browser security sandbox.

• AJAX typically uses DOM-manipulation techniques to create dynamic UI
effects. Although DOM-manipulation is becoming more consistent across
browsers, there are still inconsistencies. You must be sure that the tech-
niques you use in your mashup are consistent across all of your targeted
client execution environments.

• The XMLHttpRequest object used by AJAX to handle request and response
messages passing between client and server is obtained using different Java-
Script methods depending on whether the browser is Microsoft-based
(Internet Explorer). Most AJAX libraries address this difference already.

• The use of the XMLHttpRequest object implies the need for JavaScript being
enabled by the client execution environment. While this is generally the case,
some execution environments and/or companies do not or will not allow
JavaScript. Also, some search-engine technologies will not pick up content
semantics effectively if they are embedded within JavaScript code.

• The dynamic UI effects created by the use of DOM manipulation tech-
niques can also play havoc on bookmarking and use of the “back” or
“forward” button in a web browser and lead to a confused user experi-

From the Library of John Jeffrey Hanson

ptg31978834

DETERMINING REQUIREMENTS AND CONSTRAINTS 61

ence. One of the effects enjoyed by the use of AJAX is a more desktop-like
look-and-feel. However, the fundamental paradigm of the web browser is
to allow unstructured browsing with the ability to go forward and back-
ward with regards to your browsing history. Browsing history and AJAX
execution history are usually unsynchronized leading to confused users if
not handled effectively.

• Since AJAX can execute requests asynchronously in the background, it is
important to keep the user engaged and updated as background processes
execute. This typically involves the use of UI controls such as progress
bars, status dialogs, and so on to inform the user of the progress of these
processes.

Data Layer

When preparing your data layer, you must address things in terms of protocols
and data formats. Since the environment for mashups is best addressed using a
resource-oriented or REST-based architecture, you should prepare your data
layer to work effectively within one or both of these environments.

Data protocols that lend themselves well to a mashup environment currently
include JSON, XML, RSS and Atom, and SOAP. A careful analysis of your
business model and technical climate can help to determine which are the most
advantageous to the requirements of your mashup and, therefore, help you
decide on the necessary steps to take from your data infrastructure.

Some of the advantages of each protocol and/or data format are

• JSON—A JavaScript data format that offers the advantage of easy accessibil-
ity and parsing from within a JavaScript environment. JSON supports a lim-
ited number of simple primitive types allowing complex data structures to be
represented and consumed easily from standard programming languages.

• XML—A general-purpose markup language for representing data. XML
data is easy for humans to read and understand. It is easy to transform
into other formats using tools available in nearly every programming lan-
guage. XML supports schema-based validation. It is supported by many
formal enterprise data format standards. It supports internationalization
explicitly. XML is platform and language independent and extensible.

• RSS and Atom—XML-based data formats for representing web feeds such
as blogs and podcasts. RSS and Atom are ideally suited for representing
data that can be categorized and described using channels, titles, items,
and resource links.

From the Library of John Jeffrey Hanson

ptg31978834

62 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

• SOAP—An XML-based data format and protocol designed as a mecha-
nism and messaging protocol to use for web services in which messages are
exchanged within a payload known as an “envelope.” Like XML, SOAP is
platform and language independent and extensible. SOAP is a specific
incarnation of XML that is supported and sometimes mandated for many
formal enterprise data format standards.

Some of the disadvantages of each protocol or data format are

• JSON—Does not support namespaces or schema-based validation and is
not accepted by nearly as many formal enterprise data format standards as
XML. However, popularity and support for JSON is increasing rapidly.
JSON does not support internationalization explicitly.

• XML—Is verbose and is strictly a data markup specification. It does not
intrinsically support language-level primitives, arrays, objects, and so on.
Therefore, a distinctly separate process typically occurs between serializing
XML data to and from the programming language.

• RSS and Atom—Share the same disadvantages as XML and are primarily
focused on representing resources and feed data. However, both formats
are being adopted for more general purpose needs.

• SOAP—Shares the same disadvantages as XML as well as having the addi-
tional overhead of the SOAP envelope.

Other concerns that you should address in preparation for a mashup envi-
ronment include defining your logical datasets as resources along with corre-
sponding MIME types to facilitate a robust resource-oriented infrastructure.
Also, transformation frameworks should be put in place to support such func-
tions as data integration, sorting, and security augmentation.

Process Layer

Supporting a mashup infrastructure from the process layer involves creating a
modular environment using loose-coupling techniques especially combined
with service-oriented and resource-oriented techniques and REST interactions.

To effectively support a modular infrastructure, it is essential that you take
steps to define semantically correct interfaces for your enterprise and that these
interfaces clearly identify the resources and services you want to expose to
mashup clients and resource consumers.

To help define your interfaces, try to gain an understanding of how the inter-
faces will be accessed. An examination of REST-based interactions across the

From the Library of John Jeffrey Hanson

ptg31978834

DETERMINING REQUIREMENTS AND CONSTRAINTS 63

HTTP request/response space can help to understand the interactions for your
services and resources.

• HTTP GET—Retrieves resources identified by URIs (Universal Resource
Identifiers), named in a consistent manner for your enterprise. Name your
URIs with resources and HTTP request verbs in mind and not actions. For
example, rather than retrieving a resource named myfeed.rss with a URI
such as the following:

http://example.com/resources?resource=myfeed.rss&action=get

Name it something like this:

http://example.com/feeds/123456

With this URI in place the resource client can use the HTTP GET command
to retrieve the resource referenced with the identifier “123456”, which in
this case should map to myfeed.rss.

• HTTP POST—Creates a resource identified by the data contained in the
request body. Therefore, to create the resource named myfeed.rss, the URI
shown for the HTTP GET request would be used in an HTTP POST request
along with the additional POST data needed to create the resource.

• HTTP PUT—Updates the resource identified by the request URI using the
data contained in the request body.

• HTTP DELETE—Deletes the resource identified by the request URI.

For situations where REST-based resource URI access simply will not fit, a
well-defined service API is warranted. In this case, make the semantics and pur-
pose of the service very clear in the API. For example, a service API that insti-
gates a process to create a bar chart from data passed to the API, you might
define something like the following:

http://api.example.com/chartservice/v2/
bar?key=sdf97s7sf97we97wewe323?style=stacked&colorscheme=blue&data=...

In the preceding example, the URI clearly defines an API that calls version 2
of the chart service to create a bar chart with a style of “stacked” and a color
scheme of “blue.” Other necessary information such as the application key and
data for the chart are also clearly indicated.

REST offers many benefits as long as necessary security preparations are
made to address retrievals of resources and data over HTTP.

From the Library of John Jeffrey Hanson

http://example.com/resources?resource=myfeed.rss&action=get
http://example.com/feeds/123456
http://api.example.com/chartservice/v2/bar?key=sdf97s7sf97we97wewe323?style=stacked&colorscheme=blue&data=...
http://api.example.com/chartservice/v2/bar?key=sdf97s7sf97we97wewe323?style=stacked&colorscheme=blue&data=...

ptg31978834

64 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

Preparing Your Security Infrastructure

Security for mashups is critical, since mashups include content and code from
many different sources and sites, some of which you have very little control
over. Care must be taken to ensure that your sensitive data is not passed along
to external sites where it will be exploited by the competition, spammers, or
worse. Therefore a well-designed security framework is a necessity to protect
the data exposed by your mashup infrastructure.

One of the most effective means for monitoring and securing the flow of
data that travels throughout your mashup environment is to send all requests
through a centralized point of control.

For example, in Figure 2.4, the mashup page shown in the web browser
makes requests to the corporate server and two external sites. In this scenario,
data is transmitted from the corporate site to the mashup page where it is vul-
nerable as requests are made arbitrarily to the external sites.

A more secure mechanism would be to route all requests through a central
security layer prior to transmitting to external sites. Responses received from
external sites can then be monitored and managed effectively from a security
standpoint.

Figure 2.4 Unsecured mashup data flow

Process Layer

Protocol
Adapter

Service
Module

Service
Module

data
protocol

data
protocol

Corporate
Data

Server

Data
Layer

DAO

DAO

HTTPHTTP

External
Site2

External
Site1

Mashup
Page

Web
Browser

request/
response

Corporate
Mashup
Server

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR SECURITY INFRASTRUCTURE 65

In Figure 2.5, all requests and responses are routed through the corporate
mashup server and ultimately through the security layer of the mashup infra-
structure. In this scenario, requests and responses to and from external sites can
be regulated by the security adapter where business security rules can be
applied.

By moving the build of the retrieval onto the server, you are moving more in
the direction of JSF and its associated technologies, for example, Spring Acegi.

As additional data sources become involved with the mashup, new security
protocols and providers are bound to become involved. With a centralized secu-
rity layer in place, each new provider requiring support for technologies such as
OAuth or OpenID can be addressed without involvement from the process
layer or the mashup page.

In Figure 2.6, the security layer is enabled with support for different proto-
cols and technologies by routing requests from the security adapter to the mod-
ule configured to handle each specific type of security technology.

Figure 2.5 Secured mashup data flow

Process Layer

Protocol
Adapter

Service
Module

Service
Module

data
protocol

security
protocol

security
protocol

data
protocol

Corporate
Data

Server

Data
Layer

DAO

DAO

Security
Layer

Security
AdapterHTTP

HTTP

Mashup
Page

Web
Browser

request/
response

Corporate
Mashup
Server

External
Site2

External
Site1

From the Library of John Jeffrey Hanson

ptg31978834

66 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

Presentation Layer

Interactions within the presentation layer for mashups are by definition com-
munity gathering events. Data is presented by providers with the very intention
of being shared. As such, precautions must be taken from UI artifacts and pre-
sentation code to keep sensitive data where it belongs.

Steps can be taken to secure interactions within the presentation layer for a
mashup. Some of these steps are discussed in the following sections.

Same-Origin Policy
Standard browsers are enabled with a mechanism known as the same-origin
policy, the browser security sandbox, the same-domain policy, and other names.
This mechanism specifies that HTML pages are prevented from making
requests and receiving data and resources from sites other than the site that
originated the HTML page. This is intended to prevent malicious scripts from
compromising sensitive information shown on the page.

No preparations are needed to take advantage of the browser security sand-
box. However, techniques are showing up that attempt to circumvent this
mechanism. You need to be vigilant to watch for these and avoid their use.

Figure 2.6 Secured mashup data flow with multiple security technologies

Process Layer

Protocol
Adapter

Service
Module

Service
Module

data
protocol

security
protocol

security
protocol

data
protocol

Corporate
Data

Server

Data
Layer

DAO

DAO

Security Layer

OAuth
Module

OpenID
ModuleHTTP

HTTP

Mashup
Page

Web
Browser

request/
response

Corporate
Mashup
Server

External
Site2

External
Site1

Security
Adapter

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR SECURITY INFRASTRUCTURE 67

DOM Tree Access
In a web browser, scripting code such as JavaScript can access the DOM of a
page and access or make modifications to most of the elements on the page.
This capability can be exploited to access sensitive data. For example, consider
an HTML page with two iframes containing content from the same domain as
the HTML page. In that scenario, the JavaScript snippet shown in Listing 2.1
executed in the parent HTML page within Internet Explorer can be used to
swap the text for paragraph elements in the two iframes:

Listing 2.1 Example of an iframe Swap
var p1text =
 window.frames['iframe1'].document.
 getElementById('p1').innerHTML;
window.frames['iframe1'].document.
 getElementById('p1').innerHTML =
 window.frames['iframe2'].document.
 getElementById('p3').innerHTML;
window.frames['iframe2'].document.
 getElementById('p3').innerHTML = p1text;

If the content from one or the other iframes does not originate from the same
host as the parent HTML page, the script in Listing 2.1 will be forbidden by the
browser from accessing the DOM in another iframe and from swapping the text.

Access Control and Identity Management
The first step in controlling access to protected resources and managing identity
is to validate all content and information received by the mashup page from any
external sites or user input.

Next, recognize that at some point, your mashup will need to integrate with
service APIs in proxy for a user. The goal is to do this without sharing the user’s
credentials across domains or sites. This problem is currently trying to be
solved by open standards that specify techniques for using a common service to
act on behalf of a user who has previously authenticated with the service with-
out passing the user’s credentials back and forth.

A few of these standards are

• BBAuth—Browser-based authentication from Yahoo! offers a single sign-
on (SSO) mechanism to existing Yahoo! users, allowing them to use your
services as long as you trust and accept their Yahoo! credentials.

BBAuth requires you to register your application with Yahoo! along with a
description of the application, contact information, application endpoint
URL, and Yahoo! services your application will access. When registration

From the Library of John Jeffrey Hanson

ptg31978834

68 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

is complete, an application ID and shared secret are provided to be used
for making authenticated Yahoo! service API invocations.

Your application may not access a user’s credentials until permission is
granted by the user. To obtain permission, your application must direct the
user to a Yahoo! login page, where the user enters his/her Yahoo! ID and
password. If permission is granted at this point, Yahoo! redirects the request
to your site along with a token to use to retrieve the user’s credentials, rep-
resented as an auth cookie and a WSSID. The credentials last for one hour
and must be supplied for every authenticated service API invocation.

• OpenID—A free service that allows users to access multiple secured sites
with a single identity.

Sites enabled to use OpenID present a form to a user where the user can
enter a previously registered OpenID identifier such as jdoe.ids.exam-
ple.com. The login form information is passed on to an OpenID client
library where it is used to access the web page designated by the OpenID
identifier—in this case, http://jdoe.ids.example.com. An HTML link tag
containing a URL to the OpenID provider service is read from the web
page. The site hosting the client library then establishes a shared secret
with the OpenID provider service. The user is then prompted to enter a
password or other credentials. The client library site then validates the cre-
dentials with the OpenID provider service using the shared secret.

• OAuth—A protocol for handling secure API authentication by invoking
service invocations on behalf of users. OAuth-enabled sites direct users
and associated OAuth request tokens to authorization URLs where the
users log in and approve requests from the OAuth-enabled sites. OAuth
uses a key, such as an OpenID identifier to enable authentication without
passing around usernames and passwords.

Data Layer

As with the presentation layer, the data layer must be vigilant in controlling
access to protected resources and managing identity by validating all data
received from the presentation layer or from the process layer.

To facilitate secure interactions with multiple third-party security providers,
ID keys and tokens should be stored securely by centralized repositories accord-
ing to standard data security best practices.

In Figure 2.7, a secure repository is used to store application keys, ID keys,
tokens, and so on needed by third-party security providers such as OAuth,
OpenID, and others.

From the Library of John Jeffrey Hanson

http://jdoe.ids.example.com

ptg31978834

PREPARING YOUR SECURITY INFRASTRUCTURE 69

Process Layer

The process layer is often the first line of defense when validating and process-
ing data received from a mashup page. Therefore, rules and processes must be
in place to facilitate accurate and precise control over data as it is received.

To handle security issues such as access control, identity management, and
credential propagation, the process layer may involve a separate server that can
also be used by the mashup server.

In the scenario illustrated in Figure 2.8, a request requiring authentication or
authorization is first handled by the corporate security server, outside any inter-
action with the mashup server. Once authentication and/or authorization is suc-
cessfully established, the mashup server can be engaged using tokens, cookies,
and so on that can be passed from the mashup page to the mashup server and
ultimately to the security server.

Figure 2.7 Secured ID storage

Process Layer

Protocol
Adapter

Service
Module

Service
Module

data
protocol

security
protocol

security
protocol

data
protocol

Corporate
Data

Server

Data
Layer

DAO

DAO

Security Layer

OAuth
Module

OpenID
ModuleHTTP

HTTP

Mashup
Page

Web
Browser

request/
response

Corporate
Mashup
Server

External
Site2

External
Site1

Security
Adapter

Secured ID
Storage

From the Library of John Jeffrey Hanson

ptg31978834

70 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

Preparing Your Governance Infrastructure

Mashup governance deals with the processes, policies, laws, and other issues
that drive the way companies or enterprises conduct affairs within a mashup
environment. This discipline is structured around the IT systems and technolo-
gies that personify the entire mashup infrastructure. Some areas of mashup gov-
ernance overlap with standard IT governance and are not addressed here, but
other areas of governance are unique to the mashup environment. These issues
are the focus of this section.

Mashup governance is concerned with the manner in which the components
(services, data, UI artifacts, and so on) that embody a mashup infrastructure are
managed. Governance of mashup components must address the mashup lifecycle
in its entirety including requirements gathering, design, implementation, testing

Figure 2.8 Separate security server

Process Layer

Protocol
Adapter

Service
Module

Service
Module

data
protocol

security
protocol

security
protocol

request/
response

data
protocol

Corporate
Data

Server

Corporate
Security
Server

Data
Layer

DAO

DAO

Security Layer

OAuth
Module

OpenID
Module

HTTP

HTTP

Mashup
Page

Web
Browser

request/
response

Corporate
Mashup
Server

External
Site2

External
Site1

Security
Adapter

Secured ID
Storage

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR GOVERNANCE INFRASTRUCTURE 71

and debugging, and deployment. Therefore, it is essential that policies and pro-
cesses are put into place for each phase of the mashup lifecycle. Policies must be
recorded and enforced to enable effective accountability and improvement.

Some of the other issues that a mashup organization often overlooks, but
must address, include

• An accounting and logging of the software components (services, UI arti-
facts, and other software modules) and hardware components currently
owned by the organization

• Implementation of development processes to ensure the most efficient use
and reuse of these components

• Sufficient documentation and training to promote use of these components

• Strict record keeping to enable process improvements

To support governance across the lifecycle of building a mashup infrastruc-
ture, a company or enterprise should implement the use of automated toolsets
to monitor, log, enforce, control, and archive the deliverables and processes for
each lifecycle step. Some of the tools that fulfill these requirements include

• Project management software such as Basecamp, Microsoft Project, Open-
Proj, and GanttProject

• Version-control tools such as CVS, Subversion, Git, and others

• System and software modeling tools such as UML modelers, CAD tools,
and data modeling tools

• Build tools

• Testing tools and frameworks such as JUnit

• Issue tracking tools such as Bugzilla, Mantis, and Trac

• Deployment tools and frameworks

Presentation Layer

Some typical issues that you must address when managing governance of your
mashup’s presentation layer are

• Delivering the intended value UI artifacts

• Complying with the look-and-feel of your organization

From the Library of John Jeffrey Hanson

ptg31978834

72 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

• Effective maintenance of UI artifacts

• Monitoring performance of UI to meet service level agreement (SLA)
requirements

• Managing deployment of UI artifacts to ensure an uninterrupted user
experience

These issues are discussed in the following sections.

Data Layer

Mashup data governance involves the processes and technologies required to
manage the views of data and resources for a company or enterprise. Goals for
data governance are to ensure consistency, mitigate risk of noncompliance,
monitor and improve data security, exploit the reuse potential of data via trans-
formations and mediations, and manage the quality of data to address data
integrity.

One of the most important goals in mashup data governance for most com-
panies or enterprises is to ensure that data can be easily shared across depart-
ments, applications, and mashups. This goal is often met most effectively when
a formal data authority group is established with this as its primary objective. A
data authority officer or leader is often created to manage this process to ensure
the success of the data authority group. This helps to establish a process that
will be followed, and the benefits of proper governance, including compliance,
security, among other things, will be realized.

Process Layer

Mashup governance for the process layer shares many of the same goals of a
service-oriented infrastructure. A primary objective is to leverage components
such as services, processes, and software modules, to deliver the most value for
a company or enterprise. Governance for a mashup infrastructure seeks to com-
ply with standards, laws, policies, SLAs, and other guides.

A mashup infrastructure should enable a company or enterprise to use ser-
vices, processes, and software modules, for example, to enhance the speed and
effectiveness of an organization to meet the demands of a dynamic market. This
requires modular software architectures in which the semantics of software
components, especially service APIs, match the business model very closely.

Change management enters a new dimension for enterprise mashups since
the ultimate landscape for mashup components is dynamic and wide-reaching.
The slightest change of a service API or resource URI can have extensive ramifi-

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING FOR STABILITY AND RELIABILITY 73

cations, both negative and positive, due to network effects of mashup compo-
nent reuse. Therefore QA efforts must be diligent to ensure proper software
quality for mashup components and subsystems.

Regression testing, load testing, and performance monitoring are areas that
need special attention for a mashup infrastructure to ensure effective manage-
ment of network effects.

Preparing for Stability and Reliability

Mashups create a dynamic environment where the potential for change is vast.
Therefore, it is essential that you prepare your infrastructure to handle such
issues as the potential load, error conditions, and data refactoring to name a
few. This section discusses the issues and solutions to address when preparing
your infrastructure to handle the evolution and stresses of a mashup environ-
ment, with attention paid to each specific mashup development type.

Presentation Layer

In the presentation layer of a mashup infrastructure, you must consider how
accessing resource URIs and invoking service APIs on external sites can affect
your mashup pages. The following are steps you can take to avoid errors and/or
lapses from the perspective of the presentation layer:

• Be sure you rely on the results returned from external resource URIs or
external service APIs. Establish a solid working relationship with external site
vendors or use reliable sources. Test results thoroughly on a regular basis.

• Make sure external resource URIs and service APIs are reliable and will
not change without warning. Consider protecting your pages from unan-
ticipated changes in a UI artifact by placing a layer of abstraction between
them and the external site using service APIs or resource URIs hosted on a
site you control, such as your service platform or mashup server.

• Distribute local copies of third-party JavaScript libraries. Third-party Jav-
aScript library references placed in HTML pages require a separate hop to
the site where the libraries are hosted. If there is a problem with the site or
the hop to the site, it is manifested in your page. Care must be taken to
ensure that third-party libraries do not pose security risks. If possible, dis-
tribute copies of the libraries from a trusted source that you control.

• Observe strict management of the lifecycle for UI artifacts. Be sure to
establish sound practices for handling the lifecycle for widgets, scripts,

From the Library of John Jeffrey Hanson

ptg31978834

74 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

snippets, and so on. Use reliable change-management, testing, and issue-
management techniques, methodologies, and tools.

Data Layer

In the data layer of a mashup infrastructure, you must consider how data
returned from your own resource URIs and service APIs can affect your
mashup pages and processes. The following are steps you can take to avoid
trouble from the perspective of the data layer:

• Choose the appropriate transaction isolation level—Isolate transactions from
each other using the level most effective for a given situation with special
care taken to avoid unreleased locks in the event of transaction failure.

• Use smaller datasets—Smaller data sets reduce the potential for timeouts,
interruptions, and other problems associated with larger payloads.

• Rely on data snapshots whenever possible—Cache data when possible and
return snapshots, if a situation allows. REST-based invocations are under-
stood to return a snapshot of a given resource; therefore, exploit this seman-
tic to reduce overhead and unnecessary interactions with your data stores.

• Use common/normalized schemas across data sources—Common or nor-
malized schemas across different data sources leads to a consistent view of
the data no matter how it is accessed. Adhering to formal standards and
specifications can play an important part in normalizing schemas. Some
commonly used standards are the business transactions suite of schemas
from the Open Applications Group, SOAP, vCard, and FIXML

Process Layer

Stability in the process layer of a mashup infrastructure involves adhering to
common software-engineering and service-oriented principles, methodology, and
patterns, which address modular frameworks and platforms. The following are
steps you can take to ensure stability from the perspective of the process layer:

• Modular service design—Insulate client code from couplings defined by
the process layer using patterns and techniques that allow finer-grained
services to be aggregated into more general services that promote proper
semantics for the business model.

• Configuration management—Adopt effective configuration management
to deal with dependencies across multiple services, UI artifacts, and soft-
ware modules, which may span multiple internal and external sites.

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING FOR PERFORMANCE 75

• Change management—Formulate change management methodologies in
terms of entire business processes rather than just transactions. This may
require a shift in employee responsibilities and roles.

• Issue management—Issue management tools and processes must be flexi-
ble and adaptable and able to support teams and products across a wide
range of technological and business concepts.

• Release management—Adopt release management tools that are extremely
flexible with a high-degree of communication and collaboration between
affected business units and development teams. Automated processes and
tools are important to reduce errors caused by manual intervention.

• Testing and debugging—Establish strict testing processes to support the
entire mashup domain. Pay particular attention to unit testing and regres-
sion testing.

Preparing for Performance

Mashups are dynamic, heterogeneous environments where resource usage,
load, and capacity requirements can be hard to predict. If network effects occur,
system performance can be drastically affected. Therefore, it is essential to pre-
pare for the potential impact that your system might encounter if such a condi-
tion is experienced. This section discusses some of the problems for which to
prepare your mashup infrastructure as well as some of the solutions.

Presentation Layer

In the presentation layer of a mashup infrastructure, proper steps must be taken
to keep the initial interface with your infrastructure optimized for bandwidth
and network speed. The following are steps you can take to optimize the per-
formance of the presentation layer of your mashup infrastructure:

• Serve static when possible—Dynamic service responses are usually slower
than static data. Therefore, serve static data as service responses when it
makes sense.

• Load test UI artifacts—Perform complete load testing on UI artifacts using
isolated manual techniques or automated tools.

• Optimize scripting libraries—Be sure to identify script code that makes too
many trips to the server for resources and service API invocations. This is

From the Library of John Jeffrey Hanson

ptg31978834

76 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

especially important if the service provider monitors the number of times a
request is made on a given service.

• Compress JavaScript—JavaScript can be compressed and used almost as
easily and transportable as uncompressed JavaScript, so look into tech-
niques and tools that can help to support this, if needed.

• Cache and serve—When possible, cache widgets, badges, and so on. and
serve them from your site instead of an external site.

Data Layer

Mashups are typically resource/data intensive. Therefore, steps should be taken
to optimize the data layer of a mashup infrastructure. The following are steps
you can take to create an optimized data layer framework:

• Cache—If data can be used by multiple consumers and can bear being
slightly stale, cache it.

• Data snapshots—REST-based resource URIs should return snapshots of
data by design, so exploit this by providing snapshots of data. Refresh the
snapshots between requests.

• Intelligent data normalization—Be smart about your data normalization.
Instead of normalizing for the sake of normalization, normalize to the
point where performance is not degraded to a large degree due to larger
numbers of joins and other problems.

• Reduce payload size—If you find payload sizes creeping up, consider
refactoring the resource-URI or service-API semantics to serve finer-
grained results.

Process Layer

In addition to normal enterprise performance tactics such as load-balancing,
caching, clustering, and so on, the process layer for a mashup infrastructure
should be concerned with performance issues at the service and software mod-
ule level, specifically addressing the following:

• Optimize pools—Impact on overall system performance can occur in
thread pools, database connection pools, object pools, and so on. Perform
thorough load tests on all pool structures and optimize accordingly.

• Instrument effectively—Intelligent instrumentation of services and software
modules helps monitoring services and tools to identify problems earlier.

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR DATA INFRASTRUCTURE 77

• Exploit asynchronous interactions—Asynchronous interactions with event-
throwing services and software modules can help to build more flexible
systems allowing better design decisions to be made and, therefore, leading
to optimization by design. Asynchronous messaging is a natural communi-
cation model for loosely coupled infrastructures.

• Enable hot deployment of services and software modules—The ability to
dynamically switch from one service or software module to another can
eliminate downtime and lags. Service patches and updates can be applied
when needed.

• Control service and software component lifecycle—The ability to auto-
matically restart stalled or stopped services and/or software modules leads
to a smoother-running system and an enhanced user experience.

• Use stateless services—Stateless services scale more easily than stateful ser-
vices and simplify fault-tolerant failover.

• Employ effective monitoring tools—The use of effective monitoring tools
helps you to identify problem areas quicker where fixes can be applied.
Monitoring tools should complement your instrumentation techniques and
event-throwing services and software modules.

Preparing Your Data Infrastructure

Mashups operate in a data-intensive atmosphere where the need for many
views on the same data can be enormous. Therefore, an agile data infrastruc-
ture is needed to support current requirements as well as many unforeseen
future requirements. This section discusses the issues and solutions to address
when preparing your data infrastructure to handle the needs of a mashup
environment.

Presentation Layer

In the presentation layer of a mashup infrastructure, data is typically handled
by scripting code and usually takes the form of text; XML; an XML-based dia-
lect such as RSS, RDF, or ATOM; or JSON. Proprietary formats are found but
are not compatible with the open atmosphere in which mashups thrive.

The following sections address how you can prepare the presentation layer
of your mashup infrastructure for efficient data handling.

From the Library of John Jeffrey Hanson

ptg31978834

78 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

POX (Plain Old XML)
XML is great for applying semantics to data and documents. It is great for
describing data in a human-readable manner and also addresses international-
ization in a powerful way. XML is a great format for serializing and transport-
ing entire documents, and many specifications for business have mandated
some dialect of XML as the payload format. Since XML was gaining such pop-
ularity as a universal document model, it seemed natural to design serialization
techniques and technologies for it. However, XML is verbose and can be diffi-
cult to apply to programming language constructs. Mashups deal with data in
smaller chunks, primarily from scripting languages running in a browser, and as
such, XML was found to be a difficult fit at times.

Plain old XML (POX) is the name often given to XML when referring to it
as a data-serialization format. POX was the original data format for which
AJAX was developed. However, it was soon discovered that there was a need to
reduce the size of payloads transported from browser to server and back. It was
also apparent that more efficient techniques were needed to integrate payload
data with scripting languages. JSON was developed to meet this need and is
gaining widespread use and popularity.

JSON
JSON is a data format that is a subset of the JavaScript programming language
and can embody simple data structures with a limited set of primitives that can
be processed by most modern programming language. Objects can also be rep-
resented with JSON as associative arrays.

Listing 2.2 is an example of a corporate user object represented in JSON format.

Listing 2.2 Example of a JSON User Object
{
 "userName": "jdoe",
 "fullName": "John Doe",
 "employeeInfo": {
 "dept": "engineering",
 "title": "Senior Software Engineer",
 "employeeID": 12345
 },
 "emailAddresses": [
 "email1": "jdoe@example.org",
 "email2": "jdoe@example.com"
]
 }

In Listing 2.2, the JSON user object is simply a human-readable JavaScript
construct that can be processed using standard JavaScript language methods
and techniques.

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR DATA INFRASTRUCTURE 79

JSON has been gaining a tremendous amount of popularity in the AJAX and
mashup community because it is an easy way to serialize small chunks of data
in-and-out of a JavaScript environment such as a mashup or AJAX-enabled
web page.

Techniques have been developed that exploit JSON and the dynamic ability
to execute JavaScript on-the-fly to sidestep the browser security sandbox. Many
widgets, gadgets, badges, and so on use these techniques and, therefore, many
mashups depend on them.

RSS and Atom
RSS and Atom are XML dialects used to serialize web feeds such as blogs and
news. An RSS or Atom document contains descriptive information about a feed
such as a summary, description, author, published date, and other items.

RSS and Atom feed readers are used to enable a model in which users sub-
scribe to feeds/blogs that will be periodically queried by the readers. The read-
ers then display a brief summary of the feed/blog content to the user. This
makes an effective means for receiving updates for content of interest to a user.

Mashups often use RSS feed data as content and as a means for obtaining
summary information about a given topic or entity to add value to the content.
This process requires the ability to parse the feed data using XML-parsing code,
often in JavaScript when performed in a browser. Mashups also embed RSS and
Atom readers in the page as a widget, gadget, or badge.

Microformats
Microformats is an approach to formatting snippets of HTML and XHTML
data to create standards for representing artifacts such as calendar events, tags,
and people semantically in browser pages.

For example, the hCard microformat shown in Listing 2.3 represents my
information.

Listing 2.3 Example of an hCard Microformat
<div class="hCard">
 <div class="fn">J. Jeffrey Hanson</div>
 <div>Jeff Hanson</div>
 <a class="url"
 href="http://www.jeffhanson.com/">
 http://www.jeffhanson.com/
 <div class="country-name">USA</div>
</div>

Microformats use simple markup annotations meant to add semantic mean-
ing to standard HTML and XHTML markup. The example in Listing 2.3 uses

From the Library of John Jeffrey Hanson

ptg31978834

80 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

HTML tag properties to annotate a block of markup representing my contact
information.

Since microformats enable a more semantically rich web page, they are used
in greater number to lend semantic meaning to mashup pages.

Data Layer

A mashup environment responds effectively to a resource-oriented data layer. In
a resource-oriented data layer, anything that can be accessed over the HTTP
protocol should be identified by and accessible with a URI. Therefore, it is
essential to find a data model for your mashup infrastructure that lends itself
well to resource-oriented, URI-referencing access methods.

The Resource Description Framework (RDF) standard is built on the notion
that all resources are to be referenced using URIs. RDF also attempts to pro-
mote semantic meaning to data. This idea is central to the mashup environ-
ment, where data is a collection of loosely coupled resources. With respect to
this knowledge, RDF makes a great fit as a universal data model for the data
layer of your mashup infrastructure.

RDF as a Universal Data Model
RDF describes data as a graph of semantically related sets of resources. RDF
describes data as subject-predicate-object triples, where a resource is the subject
and the object shares some relation to the subject. The predicate uses properties
in the form of links to describe the relationship between the subject and object.
This interconnecting network of resources and links forms the graph of data
that RDF seeks to define. More information about RDF can be found at http://
www.w3.org/RDF/.

The following is an example of a simple RDF document:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:em="http://www.example.org/email#">

<rdf:Description
 rdf:about="http://www.example.org/contacts/John Doe">
 <em:email>jdoe@example.org</em:email>
</rdf:Description>

<rdf:Description
 rdf:about="http://www.example.org/contacts/Bill Smith">
 <em:email>bsmith@example.org</em:email>
</rdf:Description>
</rdf:RDF>

From the Library of John Jeffrey Hanson

http://www.w3.org/RDF/
http://www.w3.org/RDF/

ptg31978834

PREPARING YOUR DATA INFRASTRUCTURE 81

Using URIs to expose access to your resources and using RDF to create the
graph of relationships between resources makes RDF a natural choice for a uni-
versal data format.

Normalize Your Data
One of the first steps you should take when preparing the data layer of your
mashup infrastructure is to normalize the views of your data. An effective method
for normalizing views of your data is to model your data as URI-accessible
resources defined by relationships in RDF. Once your data is normalized as
RDF, you can transform to-and-from RDF according to useful semantics using
standard, ubiquitous methods and tools.

A method referred to as “triple store” is used at times to store RDF state-
ments in a relational database. With this method, an RDF subject-predicate-
object triple is stored as one row with three distinct columns.

A useful example of normalizing data to RDF and using it in different sce-
narios is explained in the following steps. Note that in this example JSON is the
ultimate data format consumed by presentation artifacts or other components:

1. Convert proprietary data and relational data to an XML dialect such as
RSS, Atom, RDF, and microformat-annotated XHTML, depending on the
type of consumer most likely to use the data.

2. Enable non-RDF, XML-dialect data with GRDDL transformations links,
where applicable.

3. Transform GRDDL-enabled data to RDF. Transform non-GRDDL-enabled
data to RDF with XSLT. A detailed discussion of GRDDL is presented
later in this chapter.

4. Optionally, categorize RDF data using RDF-S and/or OWL

5. Convert RDF to JSON using utilities for the given programming language
used by your process layer.

This process is illustrated in the diagram shown in Figure 2.9.
To understand this process, you must understand the relationships between

RDF and RDF transformation technologies such as GRDDL. In this process,
GRDDL and associated transformation documents are applied against an RDF
document to produce the final transformed document.

RSS
Regarding the data layer, RSS is a good format for representing simple, catego-
rized, dated, textual data. RSS data is easily consumable using standard XML

From the Library of John Jeffrey Hanson

ptg31978834

82 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

tools. Also, many specific RSS libraries and tools are available in most pro-
gramming languages.

RSS has a number of benefits including the ability to aggregate content easily
from multiple RSS data sources. The simplicity of the RSS structure is shown in
Listing 2.4.

Listing 2.4 Example RSS 2.0 Document
<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>Enterprise Mashup News</title>
 <link>http://www.jeffhanson.com/mashups/rss/index.rss</link>
 <description>
 Latest news about enterprise mashups.
 </description>
 <pubDate>Mon, 30 Jun 2008 05:02:00 GMT</pubDate>
 <lastBuildDate>Fri, 4 July 2008 10:22:01 GMT</lastBuildDate>

Figure 2.9 Data normalization process

Corporate
Data

Server

Data
 Layer

JSON-
enabled

DAO

GRDDL
Processor

XML
Transformation

Module

Mashup
Page

Web
Browser

Process
Layer

Corporate
Mashup
Server

Non-RDF Data
Store

RDF Data
Store

request/
response

GRDDL Transformation
Documents

data
protocol

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR DATA INFRASTRUCTURE 83

 <item>
 <title>Enterprise Mashups</title>
 <link>
 http://msdn.microsoft.com/en-us/library/bb906060.aspx
 </link>
 <description>
 This article describes the architecture of mashups,
 and explores how you can create mashups for use in your
 enterprise. We add wisdom gained from projects with
 systems integrators who have implemented mashups
 for the enterprise.
 </description>
 <pubDate>Wed, 2 July 2008 09:26:23 GMT</pubDate>
 <guid isPermaLink="true">
 http://msdn.microsoft.com/en-us/library/bb906060.aspx
 </guid>
 </item>

 <item>
 <title>
 Web and Enterprise Mashups for Web Services and Data
 </title>
 <link>
 http://www.developer.com/design/article.php/3755436
 </link>
 <description>
 This article discusses mashups and the differences
 between enterprise and web mashups, and
 data and application mashups. It also adds insight on
 tools that automate creation of enterprise mashups
.
 </description>
 <pubDate>Thu, 3 July 2008 11:14:54 GMT</pubDate>
 <guid isPermaLink="true">
 http://www.developer.com/design/article.php/3755436
 </guid>
 </item>
 </channel>
</rss>

Atom
Atom is another XML data format used for web feeds. The Atom format was
developed primarily due to the many different incarnations of RSS and incom-
patibilities between RSS versions.

In contrast to RSS, Atom allows for a wide variety of content types including
text, XML, and binary. Atom also allows references to external content and
allows characters not contained in the ASCII character set.

From the Library of John Jeffrey Hanson

ptg31978834

84 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

Listing 2.5 is an example of an Atom document representing the same con-
tent shown in the RSS document in Listing 2.4.

Listing 2.5 Example Atom Document
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Enterprise Mashup News</title>
 <subtitle>Latest news about enterprise mashups.</subtitle>
 <link href="http://www.jeffhanson.com/mashups/atom/index.xml"/>
 <updated>2008-07-04T10:22:01Z</updated>

 <author>
 <name>J. Jeffrey Hanson</name>
 <uri>http://www.jeffhanson.com/contact</uri>
 </author>

 <entry>
 <title>Enterprise Mashups</title>
 <link
 href="http://msdn.microsoft.com/library/bb906060.aspx"/>
 <id>
 tag:jeffhanson.com,2008-07-02:/123456/enterprise-mashups
 </id>
 <updated>2008-07-02T09:26:23Z</updated>
 <summary>
 This article describes the architecture of mashups,
 and explores how you can create mashups for use in your
 enterprise. We also add wisdom gained from projects with
 systems integrators who have implemented mashups
 for the enterprise.
 </summary>
 </entry>

 <entry>
 <title>
 Web and Enterprise Mashups for Web Services and Data
 </title>
 <link
 href="http://www.developer.com/design/article.php/37554"/>
 <id>
 tag:jeffhanson.com,2008-07-03:/123457/enterprise-mashups
 </id>
 <updated>2008-07-03T11:14:54Z</updated>
 <summary>
 This article discusses what mashups are and the differences
 between enterprise and web mashups, and
 data and application mashups. It also adds insight on
 tools that automate creation of enterprise mashups
.

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR DATA INFRASTRUCTURE 85

 </summary>
 </entry>
</feed>

GRDDL
Industries and enterprises are continually trying to find ways to standardize the
representations of data that are transferred back and forth. XML dialects have
been the most commonly used means for realizing this goal. With all of these
standard XML dialects in place, a mechanism for extracting relevant data
should be relatively easy. However, producing content that is relevant to a
resource-oriented environment is not as simple. The GRDDL (Gleaning
Resource Descriptions from Dialects of Languages) specification provides a
means for producing resource-oriented content, specifically RDF content, from
XML-based documents using transformation algorithms specifically formu-
lated for a given XML dialect.

GRDDL attempts to associate specific transformation algorithms with a
family of related XML documents by deriving semantics from the structure of
the XML dialect. GRDDL allows URI-discoverable “namespace documents” or
“profile documents” to declare that every document associated with a given
namespace or profile contains semantically related data that can be extracted
using the same algorithm. It also provides a means for linking to the algorithm
to extract the data. Data extracted is most often used to create RDF documents.

In Listing 2.6, an XML document is declared as a source for potential
GRDDL parsing and is linked to a GRDDL transformation.

Listing 2.6 XML Document with GRDDL Transformation Link
<contacts
 xmlns="http://example.org/contacts"
 xmlns:grddl='http://www.w3c.org/2003/g/data-view#'
 grddl:transformation=
 "http://example.org/contacts/getEmail.xsl">
 <contact>
 <name>John Doe</name>
 <email>jdoe@example.org</email>
 </contact>
 <contact>
 <name>Bill Smith</name>
 <email>bsmith@example.org</email>
 </contact>
</contacts>

The XML in Listing 2.6 is linked to the transformation identified by http://
www.example.org/contacts/getEmail.xsl. When the document is encountered by
a GRDDL processor, getEmail.xsl transformation is applied against the docu-
ment and the RDF document presented in Listing 2.7 is produced.

From the Library of John Jeffrey Hanson

http://www.example.org/contacts/getEmail.xsl
http://www.example.org/contacts/getEmail.xsl

ptg31978834

86 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

Listing 2.7 RDF Document after GRDDL Transformation
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:em="http://www.example.org/email#">

<rdf:Description
 rdf:about="http://www.example.org/contacts/John Doe">
 <em:email>jdoe@example.org</em:email>
</rdf:Description>

<rdf:Description
 rdf:about="http://www.example.org/contacts/Bill Smith">
 <em:email>bsmith@example.org</em:email>
</rdf:Description>
</rdf:RDF>

Process Layer

Preparing your process layer for mashup data is a process of accepting requests
in a given format, returning responses in a given format, and providing mecha-
nisms for supporting transformations from one format to another.

The following tasks prepare your process layer for mashup data handling:

• Support resource-oriented techniques such as mapping resource URIs to
data sources.

• Enable a REST approach for handle service API requests.

• Return snapshots of data and cache when possible.

• Broadcast data changes to snapshot monitors to keep snapshots synchro-
nized with data sources.

• Support a stateless communication model for service APIs.

• Combine results from multiple services using a normalized data model,
such as RDF.

Preparing Your Implementation Strategy

Mashups can be easy to build from an unsecured, UI perspective. However, to
address the constraints and requirements of a secure, scalable, and potent enter-
prise mashup, a comprehensive implementation strategy is needed. Preparing an
infrastructure for the dynamic and agile nature of mashups requires tools and
methodologies that are just as agile. This section discusses techniques and tech-

From the Library of John Jeffrey Hanson

ptg31978834

PREPARING YOUR IMPLEMENTATION STRATEGY 87

nologies to address when preparing your implementation strategy for a mashup
environment.

Presentation Layer

The presentation layer of a mashup infrastructure must be enabled with that
ability to change and evolve to meet the immediate influences of customers,
industry trends, and market pressures.

The following sections address some of the tips and technologies that help to
facilitate an agile and powerful presentation-oriented mashup layer.

A natural tendency when building a mashup is to stuff everything into the
presentation layer since results can be seen so quickly. In fact, the popularity of
mashups can be attributed to this phenomenon. However, when thinking in
terms of an enterprise infrastructure that must evolve effectively and promote
reuse across potentially many development groups, you must be careful to keep
code where it may do the most good over a long period of time. Therefore, be
careful to restrict code in the presentation layer to modules and scripts that ful-
fill the precise purpose of each particular mashup. Always monitor presentation
layer development processes and make careful judgments about the interface
abstractions and software modules involved to be sure to distribute logic to the
most useful domain—that is, service platform, resource platform, data sources,
presentation platform, and so on.

AJAX
AJAX is built on an HTTP communication mechanism from browser-to-server
and back again that operates outside the normal user-instigated request/
response process. This ability coupled with dynamic DOM manipulation tech-
niques enables you to build richer web pages than traditional methods because
it allows you to place a higher degree of application logic in the web page.

In a mashup environment AJAX can be exploited to process data and con-
tent from different sources and apply the data and content to a given web page
dynamically. However, there are disadvantages to using AJAX in a mashup
environment as well.

Following are some popular AJAX libraries:

• The Yahoo! User Interface Library (YUI)—http://developer.yahoo.com/yui/

• dojo—http://dojotoolkit.org/

• jQuery—http://jquery.com/

• prototype—http://www.prototypejs.org/

From the Library of John Jeffrey Hanson

http://developer.yahoo.com/yui/
http://dojotoolkit.org/
http://jquery.com/
http://www.prototypejs.org/

ptg31978834

88 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

• script.aculo.us—http://script.aculo.us/

• MooTools—http://mootools.net/

IDEs and Editors
You need a development environment for your mashups. JavaScript editors and
IDEs are typically the environments used; however, a number of mashup-specific
tools are being introduced. The following are some of the more popular devel-
opment environments for your presentation layer:

• Eclipse—http://www.eclipse.org/

• MashupMaker—http://www.webrpc.com/mm/edit.jsp

• JackBe Presto—http://www.jackbe.com/

• Aptana Studio—http://www.aptana.com/

• Adobe Flex—http://www.adobe.com/products/flex/

• Yahoo! Pipes—http://pipes.yahoo.com/pipes/

• Google Mashup Editor—http://code.google.com/gme/

• Microsoft Popfly—http://www.popfly.com/

Data Layer

Since data in a mashup infrastructure is most often accessed from many diverse
consumers via resource URIs and/or service APIs, it is important to enable your
data layer with frameworks that facilitate an agile data model. This implies a
strict separation between your data and the data consumer, whether it is a UI
client or a software component in your process layer.

Here are some of the more popular data access frameworks that enable agile
development for your data layer:

• iBATIS—http://ibatis.apache.org/

• Hibernate—http://www.hibernate.org/328.html

• ADO.NET Data Services—http://msdn.microsoft.com/en-us/data/
bb931106.aspx

• Pear DB_DataObject—http://pear.php.net/package/DB_DataObject

Resources in a mashup environment are considered to be current snapshots of
a given piece of data. This assumption promotes the use of caching very easily.

From the Library of John Jeffrey Hanson

http://script.aculo.us/
http://mootools.net/
http://www.eclipse.org/
http://www.webrpc.com/mm/edit.jsp
http://www.jackbe.com/
http://www.aptana.com/
http://www.adobe.com/products/flex/
http://pipes.yahoo.com/pipes/
http://code.google.com/gme/
http://www.popfly.com/
http://ibatis.apache.org/
http://www.hibernate.org/328.html
http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://pear.php.net/package/DB_DataObject

ptg31978834

PREPARING YOUR IMPLEMENTATION STRATEGY 89

Most web application environments can benefit to a certain degree from intelli-
gent caching. Mashups and resource-oriented infrastructures can benefit to an
even larger degree.

The following are some of the more popular caching frameworks that can be
used for your data layer:

• OSCache—http://www.opensymphony.com/oscache/

• Ehcache—http://ehcache.sourceforge.net/

• JBoss Cache—http://www.jboss.org/jbosscache/

• ASP.NET Caching—http://msdn.microsoft.com/en-us/library/
xsbfdd8c(VS.71).aspx

• Zend_Cache—http://framework.zend.com/manual/en/zend.cache.html

Process Layer

Preparing your process layer implementation strategy involves preparing for
resource and service API support. This entails RESTful practices and loose-cou-
pling techniques. Several specifications and frameworks are offered to help in
this effort. There are some general principles that you can apply no matter
which framework you choose.

The following is a list of some concepts you can apply to your process layer
to implement an effective mashup implementation strategy:

• Create agile service APIs by enabling support for a number of different
data formats.

• Make service APIs semantically rich by offering as much information as
possible about what each API does in the API itself, for example, create-
NewUser, getUserAccount, deleteUsers, and so on.

• Standardize your service APIs and resource URIs. If you name a method to
create a user “createNewUser,” name other methods in a similar fashion,
for example, createNewAccount, createNewProfile, and so on. In the same
fashion, name resource URIs consistently. If one resource URI pointing to
a bar chart is named http://resource.example.com/charts/v2/bar, name
other URIs in the same manner, for example, http://resource.example.com/
orders/v1/sales.

• Make each service API atomic so that it performs the function that it
describes and nothing more.

• Respond to error conditions with very descriptive errors.

From the Library of John Jeffrey Hanson

http://www.opensymphony.com/oscache/
http://ehcache.sourceforge.net/
http://www.jboss.org/jbosscache/
http://msdn.microsoft.com/en-us/library/xsbfdd8c(VS.71).aspx
http://msdn.microsoft.com/en-us/library/xsbfdd8c(VS.71).aspx
http://framework.zend.com/manual/en/zend.cache.html
http://resource.example.com/charts/v2/bar
http://resource.example.com/orders/v1/sales
http://resource.example.com/orders/v1/sales

ptg31978834

90 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

Several mature third-party frameworks exist that support a service-oriented
environment. If you choose to use a third-party framework, be sure to choose
one that supports loosely coupled relationships between software components
and can be enabled to support a wide range of data formats.

Here are some of the more popular service-oriented frameworks that enable
loosely coupled implementations for a mashup process layer:

• Rogue Wave HydraSCA—http://www.roguewave.com/products/hydra/
hydrasca.php

• Spring Dynamic Modules for OSGi Service Platforms—
http://www.springframework.org/osgi

• Knoplerfish—http://www.knopflerfish.org/

• Apache Felix—http://felix.apache.org/site/index.html

• Eclipse Equinox—http://www.eclipse.org/equinox/

• WSO2 Web Services Framework for PHP—http://wso2.com/products/
wsfphp/

• WSO2 Web Services Framework for Ruby—http://wso2.com/products/
wsfruby/

• Microsoft Managed Services Engine—http://www.codeplex.com/
servicesengine

Preparing a Testing and Debugging Strategy

A testing and debugging strategy for a mashup infrastructure involves applying
service-oriented and resource-oriented QA patterns along with patterns to test
mashable UI artifacts and scripting code. Test patterns and tools should be agile
enough to handle the dynamic nature of the mashup environment. This equates
to patterns and tools configured with technologies that can change rapidly
while still retaining the coverage needed to include tests for authentication,
access control, governance, and so forth.

UI artifacts, service APIs, and data access, for example, must all be addressed
in terms of code reviews, unit testing, and integration testing. However, because
of the dynamic nature of the mashup environment, regression testing and per-
formance testing must be very rigid and complete.

From the Library of John Jeffrey Hanson

http://www.roguewave.com/products/hydra/hydrasca.php
http://www.roguewave.com/products/hydra/hydrasca.php
http://www.springframework.org/osgi
http://www.knopflerfish.org/
http://felix.apache.org/site/index.html
http://www.eclipse.org/equinox/
http://wso2.com/products/wsfphp/
http://wso2.com/products/wsfphp/
http://wso2.com/products/wsfruby/
http://wso2.com/products/wsfruby/
http://www.codeplex.com/servicesengine
http://www.codeplex.com/servicesengine

ptg31978834

PREPARING A TESTING AND DEBUGGING STRATEGY 91

Presentation Layer

The presentation layer of a mashup infrastructure must be tested for its ability
to change and evolve as the mashup domain evolves. It must also be able to
meet typical UI constraints and requirements in an environment that processes
content and input from a number of different sources.

The following tasks illustrate some of the issues that must be addressed when
testing the presentation layer for your mashup infrastructure:

• Test input validation, including input that is simply being redirected
through the presentation layer from one host to another.

• Test error handling from both internal and external hosts gracefully. Pro-
vide users with a consistent experience that gracefully handles errors no
matter where they originate.

• Test internationalization and localization of content and UI artifacts that
originate for internal hosts and external hosts.

• Test JavaScript performance and request/response interactions from AJAX
calls.

• Apply automated test harnesses to JavaScript functions to apply strict regres-
sion tests.

• Apply rigorous integration and acceptance testing to be sure content and
UI artifacts meet the standards for your organization no matter where they
are hosted.

Following are some debugging tools:

• Venkman (http://www.mozilla.org/projects/venkman/)—A JavaScript debug-
ging environment from Mozilla that supports Gecko-based browsers, such
as Firefox and Flock. Venkman is distributed as a browser plug-in and
runs as both a graphic debugger and a console debugger. Venkman sup-
ports evaluation of variables, object inspection, breakpoints, and call stack
inspection. It also supports execution of JavaScript code snippets within
the console.

• Firebug (http://www.joehewitt.com/software/firebug/)—A web development
tool for Firefox that includes a JavaScript debugger. Firebug allows break-
point setting, call stack inspection, evaluation of variables, evaluation of
expressions, and performance profiling.

From the Library of John Jeffrey Hanson

http://www.mozilla.org/projects/venkman/
http://www.joehewitt.com/software/firebug/

ptg31978834

92 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

• JsUnit (http://www.jsunit.net/introduction.html)—A JUnit-styled unit test-
ing framework for JavaScript.

• JsUnit 1.3 (http://jsunit.berlios.de/)—A unit testing framework for Java-
Script that allows you to write automated tests and test suites. JsUnit is a
part of JUnit 3.8.1, therefore, JsUnit 1.3 allows you to create unit test
suites to effectively test each JavaScript function individually or as part of
a suite of pages.

• Fiddler (http://www.fiddler2.com)—Fiddler is an HTTP debugging proxy
that allows you to inspect and filter HTTP traffic on a Windows machine.
Fiddler works automatically for applications based on the WinINET API
such as Internet Explorer, Opera, and Safari. It can be manually config-
ured to filter HTTP traffic received by Firefox.

Data Layer

Testing of the data layer in a mashup infrastructure must be concerned with load-
ing data and querying data from many different consumers and in many different
formats. Therefore, your testing strategy must be flexible and comprehensive.

Here are some of the tests that should be performed when testing your data
layer:

• Test internationalization support. This usually takes the form of ensuring that
UTF-8 is enabled for the data store and that all data is encoded consistently.

• Test database connections, deadlocks, and lock contention.

• Test queries to be sure they use the desired indexes.

• Test memory usage of cursors.

• Test data stores in a development “sandbox” to avoid destruction of vital
data.

• Test data transformations to be sure they work according to configured
business rules.

• Test performance of data writing and data queries to be sure they work
within acceptable time periods.

Process Layer

The steps involved with preparing your process layer testing strategy must follow
standard software-engineering testing practices but must also address service-

From the Library of John Jeffrey Hanson

http://www.jsunit.net/introduction.html
http://www.fiddler2.com
http://jsunit.berlios.de/

ptg31978834

BUILDING A SIMPLE MASHUP 93

oriented and resource-oriented issues. This means testing for REST-based inter-
actions, loosely coupled services, and software modules.

The following are some of tests that should be performed in your process
layer to address an effective mashup testing strategy:

• Test aggressively for system stability, including memory-leak detection,
load handling, assertion failures, and other events.

• Encourage Test Driven Development (TDD).

• Apply rigorous regression and integration test suites.

• Be strict about expected test-case output.

• Test internationalization support throughout the codebase to ensure con-
sistent encoding coverage.

• Throw and catch exceptions precisely to detect errors in the offending code.

• Trust source-code control tools rather than manual intervention to roll
back changes.

Building a Simple Mashup

Preparing a mashup infrastructure involves a number of unique processes.
Access to external data sources and service APIs must be established, applica-
tion/API keys must be obtained, data sources must be prepared for agile access
and transformation, services must be designed, and resource URIs must be
mapped. Also, security must be analyzed across a broader spectrum of compo-
nents, modules, and sub-systems than typical traditional systems. The following
sections include pointers and examples of the ideas discussed in this chapter.

The deliverables for a mashup infrastructure are products of content and
data from multiple sources. They are also dependent on good web development
tools, including script editors and debuggers, service-oriented tools, and data
access frameworks. The following are some of the items of interest for building
your mashup infrastructure.

Registering with Service-API and UI Artifact Providers

Establish relationships with the service-API providers and UI artifact providers
that you have chosen. Many well-known and trusted companies and enterprises
provide powerful services and UI artifacts that are easily integrated. Some of
these companies and enterprises are

From the Library of John Jeffrey Hanson

ptg31978834

94 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

• USPS Web Tools for shipping labels, postal rates, address information,
and so on—http://www.usps.com/webtools/

• National digital forecast database—http://www.nws.noaa.gov/forecasts/xml/

• Salesforce.com’s developersource CRM services—http://www.salesforce.com/
developer/

• Google Apps user provisioning—http://code.google.com/apis/apps/gdata_
provisioning_api_v2.0_reference.html

• Doba eCommerce services—http://www.doba.com/about/partners/about.html

• ADP Employease HR management—http://developer.employease.com/
extend.html

• Google AJAX Feed API—http://code.google.com/apis/ajaxfeeds/

• Dapper service for API creation—http://www.dapper.net/developers/
webservices/search.php

• AOL Open Authentication API—http://dev.aol.com/api/openauth

• Yahoo! Browser-based authentication service—http://developer.yahoo.com/
auth/

• buySAFE eCommerce Trust API—http://developer.buysafe.com/

Normalizing Data to RDF

Jena is Java-based, semantic web development framework. It can be used to
build applications and services that use RDF and OWL. It provides a number of
different APIs including an RDF-creation API, an RDF-parser API, and rule-
based inference APIs for RDFS and OWL.

Jena provides persistent storage of RDF data in relational databases includ-
ing Oracle, Microsoft SQL Server, MySQL, HSQLDB, and PostgreSQL. A Jena
database model is used to create a reference to a given database using an exist-
ing database connection, as shown in Listing 2.8.

Listing 2.8 Creating a Database Reference for a Jena Database Model
String dbURL = "jdbc:mysql://localhost/mashuprdf";
String dbUser = "jdoe";
String dbPasswd = "foobar";
String dbVendor = "MySQL";
String dbDriverClsName = "com.mysql.jdbc.Driver";

// load the driver class
Class.forName(dbDriverClsName);

From the Library of John Jeffrey Hanson

http://www.usps.com/webtools/
http://www.nws.noaa.gov/forecasts/xml/
http://www.salesforce.com/developer/
http://www.salesforce.com/developer/
http://code.google.com/apis/apps/gdata_provisioning_api_v2.0_reference.html
http://code.google.com/apis/apps/gdata_provisioning_api_v2.0_reference.html
http://www.doba.com/about/partners/about.html
http://developer.employease.com/extend.html
http://developer.employease.com/extend.html
http://code.google.com/apis/ajaxfeeds/
http://www.dapper.net/developers/webservices/search.php
http://www.dapper.net/developers/webservices/search.php
http://dev.aol.com/api/openauth
http://developer.yahoo.com/auth/
http://developer.yahoo.com/auth/
http://developer.buysafe.com/

ptg31978834

BUILDING A SIMPLE MASHUP 95

// create a database connection
IDBConnection conn = new DBConnection(dbURL,
 dbUser,
 dbPasswd,
 dbVendor);

// create the DB model
ModelRDB model = ModelRDB.createModel(conn);

Once the model has been created, it can be used to store RDF resources and
properties, as well as query for stored RDF resources.

Converting RDF and XML to JSON

The Java source code located at http://www.json.org/java/ provides simple yet
sufficient functionality to convert XML text to JSON objects. To convert a
string containing XML data to JSON object data involves one line of code sim-
ilar to the following snippet:

org.json.JSONArray jsonArray =
 org.json.JSONML.toJSONArray(xmlText);
System.out.println(jsonArray.toString());

Consider applying the XML data presented in Listing 2.9 to the preceding code.

Listing 2.9 Sample XML Data
<contacts>
 <organization name="Example Inc."/>
 <contact>
 <name>John Doe</name>
 <email>jdoe@example.org</email>
 </contact>

 <contact>
 <name>Bill Smith</name>
 <email>bsmith@example.org</email>
 </contact>
</contacts>

The JSON object data shown in Listing 2.10 is produced.

Listing 2.10 JSON Object Data Produced from XML
 ["contacts",
 ["organization",{"name":"Example Inc."}],
 ["contact",
 ["name","John Doe"],
 ["email","jdoe@example.org"]
],

From the Library of John Jeffrey Hanson

http://www.json.org/java/

ptg31978834

96 CHAPTER 2 PREPARING FOR A MASHUP IMPLEMENTATION

 ["contact",
 ["name","Bill Smith"],
 ["email","bsmith@example.org"]
]
]

Summary

A mashup infrastructure must address a very dynamic environment where the
potential for change is vast. Therefore, it is essential that you prepare your
infrastructure to handle this evolutionary process in areas such as potential
load, error conditions, and data refactoring. An agile data infrastructure is
needed to support current requirements as well as many unforeseen future
requirements. Preparing an infrastructure for the dynamic and agile nature of
mashups requires tools and methodologies that are just as agile.

This chapter discussed some of the preparations that should be made to cre-
ate an infrastructure that is ready to handle the dynamic and agile environment
of enterprise mashups.

Certain preparations must be made in a mashup infrastructure to address
issues, including requirements and constraints, security, governance, stability,
performance, data, implementation, testing, and performance, across all layers
of functionality. Each area of concern has issues unique to enterprise mashups
in respect to traditional enterprise software disciplines.

From the Library of John Jeffrey Hanson

ptg31978834

97

Chapter 3

Creating an Enterprise
Mashup

An enterprise mashup infrastructure must present solutions for a very agile and
evolutionary environment. Data sources can change rapidly, services are added
and changed at any given time, presentation technologies are constantly being
integrated with the system, marketing and sales departments are eager to apply
the potential facilitated by the easy UI generation model, just to name a few of
the things that can happen.

The dynamic nature of an enterprise mashup environment must be flexible
and powerful enough to handle existing business operations as well as many
new operations that arise out of the dynamic nature of the mashup develop-
ment model.

This chapter discusses some of the common and uncommon problems that a
mashup infrastructure can solve for a company. Also presented in this chapter is
a foundation for an agile mashup development framework that can address the
dynamic nature of an enterprise mashup environment.

Solving Enterprise Problems with a Mashup
Infrastructure

An enterprise mashup infrastructure involves a lot of server-side processes and
frameworks that can be used to update, access, and integrate unstructured and
structured data from sources of all kinds. An enterprise mashup infrastructure
can apply structure to extracted data that was previously unstructured. Such is
the case when structure is applied to an ordinary HTML page using screen-
scraping techniques.

An enterprise mashup infrastructure presents views of existing resources and
data to other applications where they are restructured and aggregated to form

From the Library of John Jeffrey Hanson

ptg31978834

98 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

new composite views that may even create new semantic meaning for the com-
posite data and, therefore, for the enterprise itself.

An enterprise mashup infrastructure helps to solve non-UI integration prob-
lems as well as UI-related problems. Non-UI integration solutions enabled using
the resource-oriented and semantic nature of an enterprise mashup infrastruc-
ture can be applied directly to specific business problems or indirectly through
the orchestration and aggregation of the reusable components presented by the
infrastructure.

Some of the features that can be provided with an enterprise mashup infra-
structure are

• Research projects—Research efforts can be combined from multiple
sources using information that is related semantically.

• Financial analysis and reporting—Financial decisions can pull from many
different sources as well as from data obtained as a result of combining
statistics and events from existing sources. Financial reports can enjoy a
high-degree of accuracy and timeliness due to the ability to combine data
from many different departments and organizations in real-time or near
real-time.

• Sales forecasting—Sales estimates can be empowered using data pulled
from a number of different sources, including accounting, customer sup-
port, and marketing surveys.

• Purchasing accuracy—Purchasing predictions can be more accurate due to
the ability to combine production capabilities with current prices.

• Inventory control—On-hand inventory can be accurately matched with
inventory, and predictions can be made based on up-to-date numbers
pulled from many sources.

• Defect tracking—Defects can be tracked from a number of different sources
including formal defect-tracking systems, customer support data, public
forums, and private blogs.

• Competitive pricing—Prices can be compared to competitors’ prices pulled
from many sources including screen-scraped HTML of online stores.

• Pinpoint marketing—Products and services can be offered to customers
based on interests posted to social sites, blogs, forums, and other web
sites. Ads can be strategically placed in regions where demand matches
supply points most accurately.

From the Library of John Jeffrey Hanson

ptg31978834

POTENTIAL USES OF MASHUPS FOR YOUR ENTERPRISE 99

• Personnel recruitment—Open job requisitions can be matched to potential
candidates using semantically rich data extracted from online resumes,
blogs, and articles.

Potential Uses of Mashups for Your Enterprise

The dynamic and semantically rich nature of a mashup infrastructure can be
applied in a number of different uses for an enterprise:

• Identify potential customers—Information pertaining to a given customer
or company extracted from publicly available sources such as news feeds,
stock reports, and search results can be combined with contact information
and past sales efforts to more accurately identify potential customer needs.

• Provide effective customer service—Information about orders (for exam-
ple, status, tracking, and delays) can be placed in the hands of your cus-
tomer service personnel to enable them to provide accurate information
and help to customers. Most shipping companies supply resource URIs
and/or service APIs that provide up-to-the-minute information about a
package in transit. This information can be combined with geomapping
components and internal order-tracking systems in an aggregated web
page to allow customer service personnel a precise view of packages as
they are being shipped.

• Enable your human resources departments—Active job requisition require-
ments can be matched semantically with potential candidates’ skill-sets,
location, and experience level using data pulled from online profiles,
blogs, job sites, or personal web sites. This leads to a deeper talent pool
from which to draw as well as a more current pool.

• Enable your IT departments—Product defects and feature requests can be
semantically aggregated with issue tracking software, online user-community
data, customer support reports, and system monitoring data to discover
bugs and feature requests earlier. Bugs can be more easily solved with a
larger, more semantically accurate collection of data to use for analysis
and bug re-creation.

• Empower your R&D departments—Research and development departments
can exploit research data from a vast number of resources when using
semantically enhanced resource mashup data. Data can be derived from

From the Library of John Jeffrey Hanson

ptg31978834

100 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

RSS feeds, screen-scraped sites, user forums, search results, government
agency services, and semantically enhanced internal documents. Using
data from different sources external and internal creates a virtual mindset
that empowers your R&D departments with a far greater asset than just
adding more head count.

• Compete more effectively—Provide your people with powerful tools with
which to compete. Using data extracted from RSS feeds; search results;
and competitor data such as financials, product prices, product news,
acquisition announcements, and strategic partner agreements can be com-
bined and delivered to your sales departments, marketing departments,
and engineering departments, enabling them to keep a more watchful eye
on the competition.

Uses of Mashups for Specific Enterprises

Mashups benefit enterprises in most every industry. Some benefits are evident.
However, a number of industry applications are just now realizing the benefits
of an agile mashup infrastructure.

The following items illustrate some of the unique industry benefits realized
by a mashup environment:

• Trucking and shipping—Trucking and shipping companies can gather and
analyze data from manufacturing companies, weather reporting sites, geo-
mapping services, and road condition agencies to coordinate capacity,
loading, and delivery for products.

• Economic analysis—Financial institutions and government agencies can
combine and analyze data pulled from sources such as unemployment
reports, interest rates, blue-chip company financials, foreign currency val-
ues, and mortgage-lending reports to make accurate assessments of the
economy on macro and micro levels.

• Intelligence gathering and analysis—Government and defense agencies can
gather and analyze data from external sources and internal sources to pre-
dict potential trouble situations and prepare more effectively.

From the Library of John Jeffrey Hanson

ptg31978834

DETERMINING RELEVANT APPLICATION PATTERNS FOR YOUR MASHUPS 101

Determining Relevant Application Patterns for Your
Mashups

Applications built on a mashup infrastructure can take many forms. You
should determine how your particular business needs will be best suited before
beginning the design work for your mashup infrastructure.

A good way to start is by identifying the common business processes that are
in place now and how they will be best served by UI artifacts, services,
resources, and data formats.

Also, perform analysis of the target user audience for the mashups that will
be created. Try to envision how each business process will be addressed from a
user’s perspective or from the perspective of another internal process.

Some of the common items to address when analyzing the potential uses of
your mashup infrastructure are

• Serve specific business purposes with your mashup’s perspective to meet
market demands and solve business problems.

• Address user needs with your mashups to solve specific problems and to
address necessary feature enhancements.

• Apply similar techniques and concepts used by other mashups in your
industry that have solved the same problems.

• Realize ROI potential offered by a successful mashup infrastructure
deployment.

• Solve integration issues using the semantic richness of an effective mashup
infrastructure.

• Analyze existing internal systems and where they fall short of solving your
business process challenges.

• Determine logical abstractions on your existing business logic that can be
refactored as service APIs.

• Envision how future mashups will be used to form aggregate services and
other applications or mashups by combining mashups.

• Examine your data sources to determine how they can best serve content
in a semantically rich fashion.

A thorough analysis of the items described in the preceding list helps you to
form rough designs of the primary components and artifacts to include in your

From the Library of John Jeffrey Hanson

ptg31978834

102 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

mashup infrastructure, as well as helps you to understand the use cases that can
be solved by the final product. Once this analysis is complete, you can start to
identify sources of information from internal and external resources.

Identifying Sources of Information for Your Enterprise
Mashups

Once you have identified the applicable uses for your mashups, you need to
identify the sources of information from which your mashups will draw. Con-
versely, new uses will inevitably appear after sources are identified. The sources
can include

• Existing relational databases—Data sources that are already in use by
your organization.

• Organizational documentation—Documents, spreadsheets, sales reports,
presentations, and forums that are available across servers and data stores
throughout your organization.

• Existing applications—Information can be drawn from existing applica-
tions as event data, monitoring statistics, user trends, and so on.

• Search results—Search results can be filtered and structured to establish a
semantic context that can be organized and stored as structured data.

• External commentary—Commentary from external sources about your orga-
nization. This can include analyst reports, news feeds, news sites, financial
reports, competitor articles, online trade magazines, and user forums.

Identifying Services for Your Enterprise Mashups

Service APIs exposing functionality pertaining to the parts of your enterprise
for which you want a public interface should be identified for your mashup
infrastructure. These can be identified from a number of different mechanisms:

• Legacy APIs—Existing APIs that have no public interface can be refactored
to expose a publicly available service API.

• Composite services—New functionality can be derived from the combina-
tion of multiple services or software modules. This functionality can then
be exposed as service APIs.

From the Library of John Jeffrey Hanson

ptg31978834

ENTERPRISE MASHUP DESIGN TIPS 103

• Data access operations—Data access operations often contain business
semantics that may serve better as a service API. This can help to reduce
couplings between data consumers and data sources, as well.

• Search semantics—Semantics of any search operations targeting content
internal to your organization often indicate a need for business logic that
is not yet available.

• Events—Events and notifications published by monitoring tools and software
components can be combined to form complex events and service APIs.

Enterprise Mashup Design Tips

Designing your mashup infrastructure can entail some common principles as
well as some unique techniques. Understanding the scope of these concepts can
help you make the most effective use of resources and personnel. Some of these
are as follows:

• Optimize reuse—Reuse is the primary benefit of a mashup environment.
Promoting reuse promotes creativity. Seek to promote reuse by reducing
couplings in code and by establishing effective internal documentation and
policies in which software modules and services are clearly defined and
promoted.

• Always consider bandwidth—Mashups tend to promote a high degree of
network traffic due to the use of resources scattered across many diverse
regions and sites. Be smart about making remote invocations and seek to
keep payloads at a minimum. Use caching where applicable and try to
transmit just changes in data rather than transmitting entire datasets over
and over.

• Promote the use of standards—Doing this enables you to avoid propri-
etary and ad hoc data formats and protocols. This helps to present your
mashups to more potential consumers, development tools, and client
devices.

• Establish a consistent look-and-feel—Even though a mashup environment is
dynamic and free-form, a consistent look-and-feel can be established for UI
artifacts from which mashup builders can choose. Try to promote the look-
and-feel even with external UI artifacts using CSS techniques, dynamic
scripting techniques, and even refactoring data before it is presented.

From the Library of John Jeffrey Hanson

ptg31978834

104 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

• Separate data models from presentation logic—Keep data models and pre-
sentation logic separated. Markup languages provide a quick and easy
way to present information in exciting views and forms. However, this can
lead to the tendency to combine data and presentation logic in a tightly
coupled page. Many presentation frameworks go to great lengths to keep
logic and data separated, but they are only effective if this separation of
data and logic is exploited in a strict manner.

Separation of data and presentation logic is essential for building agile teams
of developers with different skill-sets. If data and presentation logic are sepa-
rated, teams can work concurrently to produce deliverables much faster than a
linear development approach.

One of the most effective technologies used by web page developers to real-
ize separation of data and presentation logic is CSS. CSS allows look-and-feel
for web pages to be completely separated from the actual data being presented.
To modify the look-and-feel for single items, multiple items, or an entire web
site, CSS classes and tags can be adjusted without any interaction with the pre-
sentation data.

Building the Foundation for an Enterprise Mashup
Infrastructure

This section applies the concepts of this chapter to the construction of a foun-
dation for an enterprise mashup infrastructure. The basis for the architecture
used in this chapter is a multilayered platform as illustrated in Figure 3.1.

In the diagram shown in Figure 3.1, the layers for the mashup infrastructure
will be embodied as interconnected service engines or kernels that will act as the
primary segregation points of scalability and performance.

The service engines in this scenario will be implemented using OSGi objects,
where each kernel can run independently from one another and manage service
registrations, service invocations, and service lifecycles. Each kernel can be
managed using JMX-based instrumentation, and each kernel can publish its
registered services on which other kernels and software modules can make ser-
vice invocations.

Implementing Infrastructure Layers Using OSGi

The foundation technology for each kernel will be the OSGi Service Platform
(http://www.osgi.org). OSGi technology is ideally suited for any project that is

From the Library of John Jeffrey Hanson

http://www.osgi.org

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 105

interested in principles of modularity, component-oriented, and/or service-
orientated. OSGi technology combines aspects of these principles to define a
dynamic service deployment framework that is amenable to remote manage-
ment. OSGi also integrates nicely within management frameworks built on Java
Management Extensions (JMX).

OSGi technology is the dynamic module system for Java. The OSGi Service
Platform provides functionality to Java that makes Java the premier environ-
ment for software integration and thus for development. Java provides the port-
ability required to support products on many different platforms. The OSGi
technology provides the standardized primitives that allow applications to be
constructed from small, reusable, and collaborative components. These compo-
nents can be composed into an application and deployed.

Figure 3.1 High-level view of mashup infrastructure

Web
Browser

Mashup
Page

Corporate
Mashup
Server

Process Layer

Corporate
Data

Server

Corporate
Security
Server

Data
Layer

Security Layer

Protocol
Adapter

request/
response

data
protocol

Service
Module

JSON-
enabled

DAO

GRDDL
Processor

XML
Transformation

Module

DAO

Service
Module

OAuth
Module

OpenID
Module

External
Sites

RDF Data
Store

Secured ID
Storage

Non-RDF Data
Store

GRDDL Transformation
Documents

Security
Adapter

request/request/
responseresponse

securitysecurity
protocolprotocol

request/
response

security
protocol

HTTPHTTPHTTP

From the Library of John Jeffrey Hanson

ptg31978834

106 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

The OSGi Service Platform provides the functions to change the composition
dynamically on the device of a variety of networks, without requiring restarts.
To minimize the coupling, as well as manage these couplings, the OSGi technol-
ogy provides a service-oriented architecture that enables these components to
dynamically discover each other for collaboration. The OSGi Alliance has
developed many standard component interfaces for common functions such as
HTTP servers, configuration, logging, security, user administration, XML, and
many more. Plug-compatible implementations of these components can be
obtained from different vendors with different optimizations and costs. How-
ever, service interfaces can also be developed on a proprietary basis.

OSGi technology adopters benefit from improved time-to-market and
reduced development costs because OSGi technology provides for the integra-
tion of prebuilt and pretested component subsystems. The technology also
reduces maintenance costs and enables unique new aftermarket opportunities
because components can be dynamically delivered to devices in the field.

For the infrastructure discussed here, the OSGi implementation Apache Felix
(http://felix.apache.org) will be used. Felix can be easily embedded into other
projects and used as a plug-in or dynamic extension mechanism. This capability
will be exploited to construct the service kernels for the OSGi kernel infrastruc-
ture discussed in the following example.

The basic class structure for each OSGi kernel will be similar to the diagram
shown in Figure 3.2.

Notice in Figure 3.2 how the kernel relies on the Felix class. The Felix class is
the primary entry point into the OSGi implementation provided by the Apache Felix
project (http://felix.apache.org/site/index.html). With this infrastructure in place,
services can be installed, updated, and uninstalled as OSGi bundles. Figure 3.2
illustrates the classes and interfaces making up the service layer (ServicePoller-
Listener, ServicePoller, OSGiServicePoller, SimpleService, and ServicePollerEvent), the
kernel foundation (Kernel, Daemon, OSGiKernel, KernelFactory, and KernelActivator), and
OSGi classes from the Felix project (Felix, BundleContext, and Bundle).

Each kernel operates around the concept of polling for service bundles to be
placed in a specified directory from which they will be deployed. When a ser-
vice bundle is deployed, the services contained within will be registered with the
specific kernel and available for use to other kernels and service consumers
using local (in-VM) Java method calls.

The Kernel Daemon

Each kernel can be executed as a daemon thread in a stand-alone application or
embedded within a running process. Once started, each kernel polls for new
services, changed services, and removed services from a given directory.

From the Library of John Jeffrey Hanson

http://felix.apache.org
http://felix.apache.org/site/index.html

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 107

The code in Listing 3.1 illustrates the main entry point into an OSGi-based
kernel.

Listing 3.1 OSGI-Kernel Daemon Lifecycle Invocations
 Daemon daemon = new Daemon();
 daemon.initialize();
 daemon.startDaemon();
 // wait until stopped
 daemon.stopDaemon();

In Listing 3.2, a kernel daemon is instantiated, initialized, and started. From
the point, work is done until the daemon is stopped as needed.

The methods invoked on the Daemon class operate on an instance of an
abstract kernel interface made concrete through a kernel factory. In this case,
the concrete kernel instance is an OSGi-based kernel instance.

Figure 3.2 Class structure of an OSGi kernel

+ ServicePollerListener

+ methods

extends EventListener
fields

+ Daemon extends Thread

+ methods
constructors

+ fields

+ KernelFactory

+ methods
constructors
fields

+ OSGiKernel

+ methods
+ constructors
+ fields

implements ServicePollerListener
 Kernel

+ ServicePollerEvent extends EventObject

+ methods
+ constructors
+ fields

+ BundleContext

+ methods
 fields

+ Kernel

+ methods
fields

+ OSGiServicePoller

+ methods
+ constructors
+ fields

implements ServicePoller

+ Bundle

+ methods
+ fields

+ ServicePoller

+ methods
fields

+ KernelActivator

+ methods
constructors

+ fields

implements BundleActivator

+ Felix extends FelixBundle

+ methods
+ constructors
+ fields

+ SimpleService

+ methods
+ fields

From the Library of John Jeffrey Hanson

ptg31978834

108 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

Listing 3.2 OSGI Kernel Daemon Details
 /**
 * Initializes this daemon
 *
 * @throws KernelException - on error
 */
 public void initialize()
 throws KernelException
 {
 System.setProperty("com.jeffhanson.kernel",
 "com.jeffhanson.kernel.osgi.OSGiKernel");
 String userDirPath = System.getProperty("user.dir");
 File servicesLocationDir = new File(userDirPath,
 "services");
System.out.println("Creating Kernel with service dir at [" +
 servicesLocationDir + "]...");
 kernel = KernelFactory.newKernel(servicesLocationDir);
 }

 /**
 * Starts execution of this daemon
 *
 * @throws KernelException - on error
 */
 public void startDaemon()
 throws KernelException
 {
 Runtime.getRuntime().addShutdownHook(new Thread()
 {
 public void run()
 {
 System.out.println("Kernel daemon shutdown called");
 stopKernel();
 }
 });

 System.out.println("Starting Kernel...");
 kernel.start();

 Thread daemon = new Daemon();

 daemon.setDaemon(true);
 daemon.start();
 }

 /**
 * Stops execution of this daemon
 *

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 109

 * @throws KernelException - on error
 */
 public void stopDaemon()
 throws KernelException
 {
 System.out.println("Kernel daemon stopping...");
 running = false;
 stopKernel();
 }

Notice how in Listing 3.2 the details of the kernel instance are hidden from
the calling program via abstract interfaces and factories to allow different
implementations of the kernel to be substituted as needed without forcing the
caller to adapt.

The Mashup Infrastructure Kernel Using OSGi

The mashup infrastructure kernel is based on OSGi and uses the Apache Felix
implementation to provide OSGi functionality for module, service, and bundle
support.

The hidden details of the OSGi kernel are uncovered in Listing 3.3.

Listing 3.3 OSGiKernel Details
public class OSGiKernel
 implements ServicePollerListener,
 Kernel
{
 private static final int POLL_MILLIS = 30000;

 private KernelActivator m_activator = null;
 private Felix m_felix = null;
 private File m_cachedir = null;
 private ServicePoller m_servicePoller = null;
 private File m_servicesLocation = null;

 /**
 * Constructs an instance of this kernel
 */
 public OSGiKernel()
 {
 }

 public void initialize()
 throws KernelException
 {
 // Create a temporary bundle cache directory
 try

From the Library of John Jeffrey Hanson

ptg31978834

110 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

 {
 m_cachedir = File.createTempFile("osgikernel.cache",
 null); }
 catch (IOException e)
 {
 throw new KernelException("Cache directory error: "
 + e);
 }
 m_cachedir.delete();

 // Create a case-insensitive configuration property map.
 //
 Map configMap = new StringMap(false);

 // Configure the Felix instance to be embedded.
 //
 configMap.put(FelixConstants.EMBEDDED_EXECUTION_PROP,
 "true");
 // Add core OSGi packages to be exported from the class path
 // via the system bundle.
 //
 configMap.put(Constants.FRAMEWORK_SYSTEMPACKAGES,
 "org.osgi.framework; version=1.3.0," +
 "org.osgi.service.packageadmin; version=1.2.0," +
 "org.osgi.service.startlevel; version=1.0.0," +
 "org.osgi.service.url; version=1.0.0," +
 "org.osgi.util.tracker; version=1.3.2," +
 "com.jeffhanson.service; version=1.0.0");
 // Explicitly specify directory to use for caching bundles.
 //
 String cacheDir = m_cachedir.getAbsolutePath();
 configMap.put(BundleCache.CACHE_PROFILE_DIR_PROP, cacheDir);
 configMap.put(BundleCache.CACHE_PROFILE_PROP",
 "OSGiMashupKernel");

 try
 {
 // Create kernel activator;
 //
 m_activator = new KernelActivator();
 List list = new ArrayList();
 list.add(m_activator);

 // Now create an instance of the framework with
 // our configuration properties and activator.
 //
 m_felix = new Felix(configMap, list);

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 111

 m_servicePoller =
 new OSGiServicePoller(m_servicesLocation,
 POLL_MILLIS);
 m_servicePoller.addServicePollerListener(this);
 }
 catch (Exception e)
 {
 throw new KernelException("Could not create OSGi kernel: +"
 + e);
 }
 }

In the construction and initialization phase of the OSGi kernel, a cache direc-
tory is established for temporary bundle storage. Also, various OSGi packages
from the Felix project are specified and passed to the Felix class where an OSGi
Service Platform will be created. A service-polling module is created and config-
ured to poll for service changes at a given interval. The OSGiKernel instance is
added to the service poller object as a ServicePollerListener object. This will
enable the OSGiKernel instance to receive updates when a service is added,
updated, and removed.

Service Methods
At this point, the kernel is initialized and started. Now, methods shown in List-
ing 3.4 can be invoked on the kernel to find services, add services, remove ser-
vices, and make service invocations.

Listing 3.4 Service-Related Methods of the OSGi Kernel
 /**
 * Retrieves a list of all installed services for this kernel
 *
 * @return a list of all installed services for this kernel
 */
 public String[] getInstalledServiceNames()
 {
 // Use the system bundle activator to gain external
 // access to the set of installed bundles.
 Bundle[] bundles = m_activator.getBundles();
 if (null != bundles && bundles.length > 0)
 {
 ArrayList<String> nameList = new ArrayList<String>();
 for (int i = 0; i < bundles.length; i++)
 {
 Bundle bundle = bundles[i];
 nameList.add(bundle.getSymbolicName());
 }

From the Library of John Jeffrey Hanson

ptg31978834

112 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

 String[] names = new String[nameList.size()];
 nameList.toArray(names);
 return names;
 }

 return null;
 }

 /**
 * Retrieves a list of all installed services for this kernel
 *
 * @return a list of all installed services for this kernel
 */
 public Object[] getInstalledServices()
 {
 // Return the set of installed bundles.
 return m_activator.getBundles();
 }

 /**
 * Retrieves a service object by name
 *
 * @param serviceName - the name of the service to find
 * @return the service object or null
 */
 public Object getServiceByName(String serviceName)
 {
 Bundle[] bundles = m_activator.getBundles();
 if (null != bundles)
 {
 for (int i = 0; i < bundles.length; i++)
 {
 Bundle bundle = bundles[i];
 if (bundle.getSymbolicName().
 equalsIgnoreCase(serviceName))
 {
 return bundle;
 }
 }
 }

 return null;
 }

The methods in Listing 3.4 return lists of services and individual services.
Details about the objects returned are hidden to allow for implementation
refactoring. Therefore, each object must be passed to the kernel when making
invocations on a given service object.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 113

Service Lifecycle Methods
The OSGi kernel has a simple lifecycle, consisting only of starting and stopping.
Within these two lifecycle methods, the Felix framework is started and stopped.
The service poller is also started and stopped.

Listing 3.5 illustrates the integration of Felix and the service poller with the
OSGi kernel.

Listing 3.5 Lifecycle Methods of the OSGi Kernel
 /**
 * Starts this kernel
 *
 * @throws KernelException
 */
 public void start()
 throws KernelException
 {
 // Start the felix framework when starting the kernel.
 try
 {
 m_felix.start();
 m_servicePoller.start();
 }
 catch (BundleException e)
 {
 throw new KernelException("Could not start OSGi kernel: +"
 + e);
 }
 }

 /**
 * Stops this kernel
 *
 * @throws KernelException
 */
 public void stop()
 throws KernelException
 {
 // Stop the felix framework when stopping the kernel.
 try
 {
 m_servicePoller.stop();
 m_felix.stop();
 deleteFileOrDir(m_cachedir);
 }
 catch (BundleException e)
 {
 throw new KernelException("Could not stop OSGi kernel: +"
 + e);
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

114 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

The start and stop methods of the kernel do just what they imply—they stop
and start the kernel. During this process the service poller is started and
stopped, and the cache directory is emptied and deleted when stopped.

Service Deployment Methods
Services are registered with the kernel using the installService method and the
uninstallService method. Services are deployed as OSGi bundles containing soft-
ware components implemented as SimpleService instances. These components,
when installed, provide the business logic and resource access logic for the
mashup infrastructure.

Listing 3.6 illustrates the service deployment details of the OSGi kernel.

Listing 3.6 Service Deployment Methods of the OSGi Kernel
 /**
 * Installs a service in this kernel
 *
 * @param serviceLocation
 * @return Object - the newly install service
 * @throws KernelException
 */
 public Object installService(String serviceLocation)
 throws KernelException
 {
 String tmpServiceLocation = serviceLocation;
 if (tmpServiceLocation.startsWith("file:/") == false)
 {
 tmpServiceLocation = "file:/" + tmpServiceLocation;
 }
 Object retVal =
 m_activator.installBundle(tmpServiceLocation);
 System.out.println(getClass().getName() +
 " service installed: " +
 serviceLocation);
 return retVal;
 }

 /**
 * Uninstalls a service from this kernel
 *
 * @param serviceLocation
 * @throws KernelException
 */
 public void uninstallService(String serviceLocation)
 throws KernelException
 {
 String tmpServiceLocation = serviceLocation;
 if (tmpServiceLocation.startsWith("file:/") == false)

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 115

 {
 tmpServiceLocation = "file:/" + tmpServiceLocation;
 }
 m_activator.uninstallBundle(tmpServiceLocation);
 System.out.println(getClass().getName() +
 " service uninstalled: " +
 serviceLocation);
 }

The installService method and the uninstallService method install OSGi bun-
dles specified by a given file-system location. When the bundles are installed,
the services within the bundle are registered as OSGi ServiceReference objects and
made available for invocation requests.

Service Invocation Method
Services installed with a given kernel instance can be invoked via the kernel
instance. The invokeService method provides the ability for a caller to make a
generic call on any service installed with the kernel, provided the service is an
instance of the SimpleService interface.

Listing 3.7 illustrates the service-invocation mechanism of the OSGi kernel.

Listing 3.7 Service Invocation Method of the OSGi Kernel
 /**
 * Invokes a service installed in this kernel
 *
 * @param service - the service to invoke
 * @param props - any properties needed by the invocation
 * @return the return value from the invocation, or null
 * @throws KernelException
 */
 public Object invokeService(Object service, Properties props)
 throws KernelException
 {
 org.osgi.framework.Bundle bundle =
 (org.osgi.framework.Bundle)service;
 ServiceReference[] registeredServices =
 bundle.getRegisteredServices();
 if (null == registeredServices ||
 registeredServices.length <= 0)
 {
 throw new KernelException("Service not found ");
 }

 BundleContext bundleContext = bundle.getBundleContext();
 if (null == bundleContext)
 {
 throw new KernelException("Bundle context is null");
 }

From the Library of John Jeffrey Hanson

ptg31978834

116 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

 Object serviceObj =
 bundleContext.getService(registeredServices[0]);
 if (null != serviceObj)
 {
 if (serviceObj instanceof SimpleService)
 {
 SimpleService simpleServiceObj =
 (SimpleService)serviceObj;
 return simpleServiceObj.execute(props);
 }
 else
 {
 throw new KernelException("Service object is invalid " +
 bundle.getSymbolicName());
 }
 }
 else
 {
 throw new KernelException("Service object is null for " +
 bundle.getSymbolicName());
 }
 }

Service invocations are directed through the invokeService method (shown in
Listing 3.7). A previously obtained service object is passed to the method along
with any properties needed by the service. An Object instance or null is returned
from the service invocation.

Each service is found by inquiring on a bundle object about its registered ser-
vices. If a service is registered and is of type SimpleService, the invocation is made
on the execute method of the SimpleService instance.

ServicePollerListener Method Implementations
The OSGi kernel registers itself with the service poller as an implementation of
a ServicePollerListener to receive notifications when service bundles are added,
updated, and removed from the services directory. That way, the kernel can reg-
ister and unregister the bundles with the underlying OSGi framework.

Listing 3.8 illustrates the steps taken by the kernel to add bundles, update
bundles, and remove bundles when notifications are received from the service
poller.

Listing 3.8 ServicePollerListener Implementation Methods of the OSGi Kernel
 /**
 * ServicePoller method
 *
 * @param evt
 */

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 117

 public void serviceAdded(ServicePollerEvent evt)
 {
 try
 {
 installService(evt.getServiceLocation());
 }
 catch (KernelException e)
 {
 e.printStackTrace();
 }
 }

 /**
 * ServicePoller method
 *
 * @param evt
 */
 public void serviceChanged(ServicePollerEvent evt)
 {
 try
 {
 String serviceLocation = evt.getServiceLocation();
 uninstallService(serviceLocation);
 installService(serviceLocation);
 }
 catch (KernelException e)
 {
 e.printStackTrace();
 }
 }

 /**
 * ServicePoller method
 *
 * @param evt
 */
 public void serviceRemoved(ServicePollerEvent evt)
 {
 try
 {
 uninstallService(evt.getServiceLocation());
 }
 catch (KernelException e)
 {
 e.printStackTrace();
 }
 }
}

From the Library of John Jeffrey Hanson

ptg31978834

118 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

The serviceAdded, serviceChanged, and serviceRemoved methods are implementations
of the ServicePollerListener interface. These methods are called by the service
poller when services are added to the service directory, removed from the ser-
vice directory, or updated in the service directory.

The sequence of steps required to drive the OSGiKernel daemon through its
complete lifecycle (initialize, start, and stop) is illustrated in Figure 3.3.

An instance of the OSGiKernel will dispatch service invocations through ser-
vices that are registered with the kernel. The kernel relies on a service polling

Figure 3.3 Sequence diagram for lifecycle of an OSGi kernel

Daemon KernelFactory Kernel Runtime ThreadTestMain

1.1:initialize

1.1.1:newKernel

1.1.1.1:initialize

1.2:start Daemon

1.2.3:start

1.6:stopDaemon

1.6.1.1:stop

1.6.1:stopKernel

1.5:invokeDictionaryService

1.2.4:start1.2.4:start

1.3:sleep1.3:sleep

1.4:getServiceByName1.4:getServiceByName

1.5.1invokeService1.5.1invokeService

1.5.2invokeService1.5.2invokeService

1.2.4:start

1.3:sleep

1.4:getServiceByName

1.5.1:invokeService

1.5.2:invokeService

1.2.2:«create»1.2.2:«create»1.2.2:«create»

1.2.1:addShutdownHook1.2.1:addShutdownHook1.2.1:addShutdownHook

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 119

mechanism that monitors a given service store, such as the file system or a data-
base. The service poller registers new services as they are found, unregisters ser-
vices as they are removed, and updates existing services as they are changed.

The Service Poller

The service polling mechanism allows hot-deployment of services at runtime
without stopping and restarting the kernel.

Listing 3.9 illustrates the polling mechanism of the service poller.

Listing 3.9 Service Polling Mechanism
 private void poll()
 {
 File[] files = m_servicesLocation.listFiles();
 if (m_cachedFiles == null)
 {
 // add all new
 if (null != files && files.length > 0)
 {
 m_cachedFiles = new ArrayList<CachedFile>();
 m_cachedFiles.addAll(fileArrayToCachedList(files));
 fireServiceAddedForAll();
 }
 }
 else if (files.length <= 0)
 {
 // remove all
 fireServiceRemovedForAll();
 }
 else
 {
 // pick and choose
 List<File> newFileList = Arrays.asList(files);

 // find deleted files
 ArrayList<File> deletedFiles = new ArrayList<File>();
 Iterator<CachedFile> cachedFileIter =
 m_cachedFiles.iterator();
 while (cachedFileIter.hasNext())
 {
 CachedFile cachedFile = cachedFileIter.next();
 if (null == isFileInList(cachedFile.m_file,
 newFileList))
 {
 deletedFiles.add(cachedFile.m_file);
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

120 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

 // Remove deleted files from cache
 Iterator<File> deletedFileIter = deletedFiles.iterator();
 while (deletedFileIter.hasNext())
 {
 CachedFile cachedFile = cachedFileIter.next();
 System.out.println(getClass().getName() +
 " service removed: " +
 cachedFile.m_file.getAbsolutePath());
 removeFileFromCache(cachedFile.m_file);
 }

 // remove deleted files from new list
 newFileList.removeAll(deletedFiles);

 // find new and changed files
 Iterator<File> newFileIter = newFileList.iterator();
 while (newFileIter.hasNext())
 {
 File newFile = newFileIter.next();
 CachedFile cachedFile = isCachedFileInList(newFile,
 m_cachedFiles);
 if (null != cachedFile)
 {
 // test modified date
 if (newFile.lastModified() >
 cachedFile.m_lastModified)
 {
 System.out.println(getClass().getName() +
 " service changed: " +
 newFile.getAbsolutePath());
 fireServiceChanged(newFile);
 }
 }
 else
 {
 m_cachedFiles.add(new CachedFile(newFile));
 System.out.println(getClass().getName() +
 " service added: " +
 newFile.getAbsolutePath());
 fireServiceAdded(newFile);
 }
 }
 }
 }

As a service is discovered to be added, changed, or removed from the services
location, the service poller adds it to its private cache and fires an event to all
registered listeners conveying information about the service.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE FOUNDATION FOR AN ENTERPRISE MASHUP INFRASTRUCTURE 121

Event-Firing Mechanisms
The fireServiceRemoved, fireServiceAdded, and fireServiceChanged methods iterate
through the list of listeners and invoke the appropriate method on each listener,
passing a ServicePollerEvent object that contains information about the event and
the service in question.

The methods in Listing 3.10 illustrate the implementation details for firing
events from the service poller as services are added, removed, and modified.

Listing 3.10 Event-Firing Methods
 private void fireServiceRemoved(File aFile)
 {
 ServicePollerEvent evt =
 new ServicePollerEvent(this, aFile.getAbsolutePath());
 Iterator<ServicePollerListener> listenerIter =
 m_listeners.iterator();
 while (listenerIter.hasNext())
 {
 ServicePollerListener listener = listenerIter.next();
 listener.serviceRemoved(evt);
 }
 }

 private void fireServiceAdded(File aFile)
 {
 ServicePollerEvent evt =
 new ServicePollerEvent(this, aFile.getAbsolutePath());
 Iterator<ServicePollerListener> listenerIter =
 m_listeners.iterator();
 while (listenerIter.hasNext())
 {
 ServicePollerListener listener = listenerIter.next();
 listener.serviceAdded(evt);
 }
 }

 private void fireServiceChanged(File aFile)
 {
 ServicePollerEvent evt =
 new ServicePollerEvent(this, aFile.getAbsolutePath());
 Iterator<ServicePollerListener> listenerIter =
 m_listeners.iterator();
 while (listenerIter.hasNext())
 {
 ServicePollerListener listener = listenerIter.next();
 listener.serviceChanged(evt);
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

122 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

The lifecycle methods, start and stop, on the ServicePoller object start and
stop the necessary tasks and processes that a ServicePoller instance needs to
effectively load and unload services as they are added and removed from the
services directory.

Lifecycle Methods
The start method ensures that the services directory is created and then starts a
timer that will run at intervals specified by the host component of the ServicePol-
ler instance. The task associated with the timer is responsible for instigating the
polling process that checks the services directory for service changes.

The methods in Listing 3.11 illustrate the implementation details of the life-
cycle methods for the service poller.

Listing 3.11 Service Poller Lifecycle Methods
public void start()
 throws KernelException
 {
 if (m_servicesLocation.exists() == false)
 {
 m_servicesLocation.mkdir();
 }
 else if (!m_servicesLocation.isDirectory())
 {
 throw new KernelException(getClass().getName()
 + ".start() invalid services location: "
 + m_servicesLocation.getAbsolutePath());
 }

 TimerTask timerTask = new TimerTask()
 {
 public void run()
 {
 poll();
 }
 };
 m_timer = new Timer();
 m_timer.scheduleAtFixedRate(timerTask, 0, m_pollMillis);
 }

 public void stop()
 throws KernelException
 {
 m_timer.cancel();
 m_timer = null;
 }

From the Library of John Jeffrey Hanson

ptg31978834

SUMMARY 123

Event Listener Support Methods
The addServicePollerListener method and the removeServicePollerListener method
are responsible for respectively adding and removing listeners to the ServicePoller
instance.

The methods in Listing 3.12 illustrate the implementation details of the event
listener methods for the service poller.

Listing 3.12 Service Poller Event Listener Methods
public void
 addServicePollerListener(ServicePollerListener listener)
 {
 m_listeners.add(listener);
 }

 public void removeServicePollerListener(ServicePollerListener
 listener)
 {
 m_listeners.remove(listener);
 }

After a listener is added to the service poller it receives notifications as ser-
vices are added, removed, and modified.

Summary

This chapter discussed some of the problems that a mashup infrastructure can
solve for a company and also presented a framework that can serve as the foun-
dation for an agile mashup infrastructure that responds to the dynamic and
evolutionary nature of an enterprise.

An agile, semantically rich infrastructure promotes operations that update,
access, and integrate diverse unstructured and structured data; presents access to
existing resources and information in a manner that allows the data to be restruc-
tured and aggregated to form new views; and can solve non-UI and UI-related
problems, including specific business problems, directly or indirectly via orches-
tration and aggregation of reusable components presented by the infrastructure.

The semantically rich nature of a mashup infrastructure can be exploited to
identify potential customers, provide effective customer service, enable human
resources and IT departments, empower R&D departments, and compete more
effectively.

You must determine how your particular business needs will be best suited
before beginning the design work for your mashup infrastructure, and then
identify the sources of information from which your mashups will draw.

From the Library of John Jeffrey Hanson

ptg31978834

124 CHAPTER 3 CREATING AN ENTERPRISE MASHUP

The mashup infrastructure described in this chapter is based on a service
layer implemented using OSGi objects that can manage service registrations,
service invocations, and service lifecycles. The service layer can publish regis-
tered services on which other software modules can make service invocations.

The framework described in this chapter lays the foundation for a flexible,
modular service infrastructure. In subsequent chapters this foundation is
expanded to enable a resource-oriented framework that works in unison with
this service-oriented infrastructure. Chapter 4 introduces some of the funda-
mental concerns that should be addressed by all enterprise mashup infrastruc-
tures along with a detailed implementation that illustrates solutions to these
concerns.

From the Library of John Jeffrey Hanson

ptg31978834

125

Chapter 4

Fundamental Concerns for
Enterprise Mashups

As with any enterprise application environment, enterprise mashup infrastructures
must address some fundamental concerns such as information management, secu-
rity, governance, and system administration. In addition to the typical enterprise
application concerns, mashup infrastructures must address an environment that
seeks to fulfill dynamic requirements and flexible solutions to business issues.

In this chapter I discuss some of the most important concerns that all enter-
prise mashup infrastructures must address. I also discuss solutions for each con-
cern and provide sample code at the end of the chapter.

Structuring and Managing Information

One of the biggest challenges facing an enterprise is the issue of managing and
sharing data from disparate information sources. Legacy mechanisms for man-
aging and sharing information typically kept data and metadata (data about the
data) separated. Semantic techniques and technologies seek to bridge the gap
between data and metadata to present a more effective means for applying
meaning to information.

Choosing the fundamental format for data within your mashup infrastruc-
ture should be one of the first areas that you address. Mashup infrastructures
derive much of their benefit from being able to apply and present semantic
meaning to data and content. This enables consumers of the data and content
to create aggregate components and content much more easily than traditional
application environments.

Applying semantics to a repository of information involves extending typical
data stores and content sources to provide structured meaning to the information
stored within, thereby giving the information source features that better enable
both machines and humans to understand the information. Once effective

From the Library of John Jeffrey Hanson

ptg31978834

126 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

semantic meaning has been applied to an information source, the data stored
within can be discovered, aggregated, automated, augmented, and reused more
effectively.

One of the best places to begin the quest for a semantic information founda-
tion is the realm of formal specifications. These specifications currently include
XML, the Resource Description Framework (RDF), the Web Ontology Lan-
guage (OWL), RDF Schema (RDFS), and microformats.

Standards such as XML, microformats, RDF, RDF Schema and OWL are
emerging as enabling technologies for semantic data interchange. The following
is a brief overview of these technologies and how they seek to facilitate seman-
tic interchange:

• Semantics—XML applies strict structure to document content. However,
semantics are derived from separate schema documents and document
type definition (DTD) documents.

• Constraints and definitions—XML Schema defines and constrains content
stored within XML documents using an XML-derived syntax.

• Relationships—RDF is an XML-derived markup language that enables
semantic meaning to resources using subject-predicate-object triples. Each
triple can be used to form an understanding of the relationship between a
subject and an object defining a resource.

• Hierarchies—RDF Schema describes RDF-defined resources using proper-
ties and classes. RDF Schema also provides features for defining semanti-
cally rich hierarchies of resource properties and classes.

• Class relations—OWL also describes resources using properties and
classes and provides the ability to define relations between classes, cardi-
nality, equality, enumeration, and so on.

• Queries—SPARQL (a recursive acronym that stands for SPARQL Protocol
and RDF Query Language) is a language and remote protocol that is used
to construct queries across assorted RDF-based data sources by using sub-
ject-predicate-object patterns.

• Rules—The Rule Interchange Format (RIF) is currently being defined and
is seeking to be embraced as a means for creating an interchange format
that can be used by disparate rule languages and inference engines.

The following sections discuss some of the data formats that are not neces-
sarily semantically rich but are being used by semantic-based infrastructures to
exchange data.

From the Library of John Jeffrey Hanson

ptg31978834

STRUCTURING AND MANAGING INFORMATION 127

XML

XML is a general-purpose markup language for representing data. Data repre-
sented as XML is easy for humans to read and understand. Transforming XML
data into other formats is easy using tools available in nearly every program-
ming language. XML supports schema-based validation, and many formal
enterprise data-format standards support XML. XML supports international-
ization explicitly and is platform and language independent and extensible.

XML is verbose and is strictly a data markup specification. It does not seek
to integrate with any one programming language intrinsically via support for
primitives, arrays, and objects. Therefore, a distinctly separate process typically
occurs between marshalling XML data to and from the programming language.

Data can be described easily in a human-readable manner with XML. XML
is a great format for serializing and transporting entire documents, and many
specifications for business such as ebXML, XBRL, FpML, OFX, and others
have mandated some dialect of XML as the payload format. Since XML was
gaining such popularity as a universal document model, it seemed natural to
design serialization techniques and technologies for it. Semantic meaning within
data and documents begins to be approached by XML using namespace context
and metadata. For XML data to effectively embody semantic meaning, addi-
tional context must be applied in the form of such technologies as XSLT.

JSON

JavaScript Object Notation (JSON) is a JavaScript data format that offers the
advantage of easy accessibility and parsing from within a JavaScript environ-
ment. JSON supports a limited number of simple primitive types allowing com-
plex data structures to be represented and consumed easily from standard
programming languages.

Namespaces and schema-based validation are not supported by JSON, and
JSON is not currently accepted by nearly as many formal enterprise data-for-
mat standards as XML. JSON is a semantically challenged approach to data
exchange, relying on tight couplings between data producer and data consumer
to form an understanding of the data. However, where JSON lacks in semantic
richness, it makes up for it in data terseness.

RSS and Atom

RSS and Atom are XML-based data formats for representing web feeds such as
blogs and podcasts. Both formats are ideally suited for representing data that
can be categorized and described using channels, titles, items, and resource
links. An RSS or Atom document contains descriptive information about a feed
such as a summary, description, author, published date, and so on.

From the Library of John Jeffrey Hanson

ptg31978834

128 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

Some of the same disadvantages that XML exposes are shared by RSS and
Atom, and both are primarily focused on representing resources and feed data.
However, both formats are being adopted for more general purpose needs. RSS
and Atom address semantic meaning by describing resources and other entities
using standard tags that explicitly define the purpose of each particular ele-
ment, for example, title, creator, and published date.

Data Mediation

Mediation handles tasks such as protocol transposing, data-format conver-
sions, and security validating to facilitate exchange between data producers and
data consumers. Typically, mediation is an operation of a messaging framework
used to simplify integration of systems, applications, services, or components.
Processing data or messages as they are transported from one component to
another is a typical function of mediation.

Mediator-driven data processing enables you to transform content from one
format to another. This is especially helpful when a data producer and a data
consumer embody some form of semantics defining the message or data, as the
semantics can be applied during the mediation process. A mediator employs
transformation and conversion using technologies such as XSLT transforma-
tions to perform the necessary data augmentation.

Mediation is a vital technology that enables separation of concerns between
software components. Mediation frameworks operate on data as it travels from
data producers to data consumers.

Mediation typically performs the following types of data augmentation:

• Transforming data from one format to another

• Embellishing data with additional data to fit the needs of the targeted data
destination

• Routing data to one or more destinations based on routing rules, content,
embedded attributes, and so forth

• Securing data in terms of authorization, authentication, signing, encryp-
tion/decryption, nonrepudiation, confidentiality, and enforcement of secu-
rity constraints such as WS-Security and Kerberos

• Ensuring that data and/or the producer of the data is authorized to send to
the targeted destination

Figure 4.1 illustrates a typical mediation framework and its relationship to a
mashup server and service framework.

From the Library of John Jeffrey Hanson

ptg31978834

DATA MEDIATION 129

As Figure 4.1 illustrates, data is directed from the service framework through
the mediation framework and its components. The processed data is then
routed to its final destination, also hosted in the service framework. As the data
flows from the service framework, through the mediation framework, and back
again to the service framework, events representing changes to the data such as
exceptions, threshold attainments, and other events are registered with the
monitoring framework. These events can then be viewed and used from man-
agement consoles and applications.

In the following sections, I discuss the components of the mediation frame-
work and monitoring framework in greater detail.

Figure 4.1 High-level view of mediation framework

Service
Framework

Mashup Server

Mediation
Framework

Security Module
Factory

Transformation
Module
Factory

outbound
data

events
events

inbound
data

Security Framework

Event Protocol
Adapter

Event Protocol
Adapter

Security
Modules

Transformation
Framework

Event Protocol
Adapter

Event Protocol
Adapter

Transformation
Modules

Logging and Auditing
Framework

Event Protocol
Adapter

Event Protocol
Adapter

Logging Modules

Event Protocol
Adapter

Event Protocol
Adapter

Auditing
Modules

Monitoring
Framework

Auditing Module
Factory

Logging Module
Factory

From the Library of John Jeffrey Hanson

ptg31978834

130 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

Logging

Logging plays a vital role in a mediation framework and across a mashup infra-
structure. As data is transferred from producer to consumer and across the dif-
ferent components that make up the mashup infrastructure, state changes,
errors, time-sensitive events, and other information can be logged and used to
optimize and stabilize the infrastructure. Logging is also a valuable tool used in
distributed system debugging.

An effective logging framework can record system-level information to track
the health of the system and individual components of the system as well as
track the flow of data across the system and system components.

Auditing

Auditing features of a mediation framework enabled within a mashup infra-
structure allow parties to track data at a level of interest to business and project
managers. Audit information often complements a logging framework.

An auditing framework can validate data to ensure correctness according to
business constraints and data-consumption requirements. Auditing frameworks
can perform tasks to record the trail of data that can later be viewed and ana-
lyzed to ensure standards compliance.

Management and Monitoring

Management and monitoring are essential parts of the administration and opti-
mization efforts within a mashup infrastructure. The decoupled and segregated
nature of a mashup infrastructure makes the need for an effective management
and monitoring framework even more important.

Management and monitoring also play an important part in maintaining a
secure environment and enforcing policies (such as authorization, privacy, and
auditing) and standards compliance. As components of a mashup infrastructure
are executed and data is transported across the infrastructure, administration
consoles and tools within an effective management and monitoring framework
are used to record and direct information as transactions transpire.

Figure 4.2 illustrates the interactions and components of a typical monitor-
ing framework as used in a mashup infrastructure.

In Figure 4.2, the mashup server and external event sources publish manage-
ment event information such as JMX, SNMP, and/or proprietary notifications
to the monitoring framework. The monitoring framework publishes manage-
ment data to the mashup infrastructure where the data can be used by mashup
components and admin consoles.

From the Library of John Jeffrey Hanson

ptg31978834

MANAGEMENT AND MONITORING 131

Performance or health monitoring is a specialized form of monitoring that
entails collecting data reflecting conditions of a system or components that
demand attention from administrative tools and personnel. Data collecting hap-
pens from your mashup infrastructure and its ancillary components and ser-
vices during system runtime. This data should be comprised of a constant flow
of information that reflects values that provide a fine-grained, detailed depic-
tion of the health of services, components, and the infrastructure as a whole. A
history of this information should be retained to establish baselines by which
you can ensure the health of each component or system. This historical data can
also be analyzed to determine the cause of problems.

Performance measurements are typically published from components that
provide instrumented access to underlying software components, hardware
components, and network interfaces. Performance measurement data can be
published in a number of different formats including SQL query result sets,
XML, and SNMP-related traps and notifications.

Each device or component from which performance data is published can
publish the data directly or indirectly. Indirect publication occurs when events

Figure 4.2 High-level view of monitoring framework

Process Layer

Corporate
Mashup
Server

Admin
Console

Admin
Console

Monitoring
Framework

Event Protocol
Adapter

Event Protocol
Adapter

Event Manager

Event Source

Event Reporting
Agent

Event Source

Event Reporting
Agent

management
data

events events

events

events

Event Source

Event Reporting
Agent

Event Collector
Module

Event Collector
Module

Event Protocol
Adapter

Event Collector
Module

From the Library of John Jeffrey Hanson

ptg31978834

132 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

are measured by an external entity that extracts pertinent performance data and
publishes it to management components and applications.

Each monitored device or component measures and collects data relating to
its availability or performance and presents it to consumers. In this case the
consumer is a monitoring framework. The data is presented via an API, event
message, or other means.

As data is received by the monitoring agent from devices or components, the
data is presented to administration consoles and mashup components to allow
humans the ability to modify, view, and analyze using mashup UI artifacts.

Mashup infrastructure administration includes gathering and displaying
monitored data, but other tasks are involved as well, such as facilitating config-
uration changes, registering services and components, and user account control.

Mashup Application and Infrastructure Administration

Mashup application and infrastructure administration must address the same
tasks as a typical enterprise administration framework along with other tasks
relating to the very dynamic and flexible environment in which mashups reside.
Some of these additional tasks include categorizing and cataloging mashup
components, managing API license keys, maintaining mashup component rela-
tionships, and others.

The following sections discuss some of the typical tasks that a mashup infra-
structure administration framework must address.

Managing Mashup Configurations

Configuration management within a mashup environment must address the
unique aspects of the mashup domain. This covers configuration management
within the presentation layer, data layer, and process layer.

Some unique aspects related to managing configuration information within a
mashup environment are as follows:

• Categorizing and cataloging mashup components—Mashup configura-
tions typically maintain a catalog or repository of items that define the
various components and services presented by the mashup infrastructure.
In addition, external components and services are defined and categorized
to enable effective reuse and reorchestration of each component.

• Feeds—Feeds are typically XML-based content, such as crime statistics for
a given area, which is pulled from various sites to be consumed and viewed

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP APPLICATION AND INFRASTRUCTURE ADMINISTRATION 133

by a feed reader. Mashups often extract content from feeds and combine
the extracted content with other types of components, such as geomapping
components, to create new forms of content, such as a geomapping page
with crime statistics for a given geographical region. Metadata for feeds is
stored and maintained by a mashup administration framework to allow
tools and developers a convenient mechanism for finding content to use in
mashup pages and applications.

• Widgets and other UI components—Widgets are small UI components
such as snippets of HTML, dynamic JavaScript, and embeddable widgets
accessed from various sites. Metadata describing widgets and other UI
components is stored within a repository or catalog of a mashup adminis-
tration framework. The metadata can then be queried and accessed by
mashup tools and developers to compose and orchestrate mashup pages
and applications.

• Mashup pages and applications—A mashup page or application is a col-
lection of data and widgets or other UI components. Mashup pages often
apply filters to the data published by feeds and widgets to derive pertinent
content for a given context. Filters are typically embodied by function and/
or operators that can be constrained and configured as needed to facilitate
such tasks as sorting data, restricting data, and combining data. A mashup
administration framework exposes tools that allow you to construct and
modify filters in a graphical manner.

Configuration data for each mashup page consists of the information
about each component on the page and all the associated filters for each
component. This information is stored and maintained within the catalog
or repository of the mashup administration framework.

• Mediation flows and configurations—Mashup administration frameworks
can present tools and applications to construct and configure messages
and data transfers that flow through a mediation framework. The actual
routes that messages and data transfers take as they travel from producer
to consumer can be configured and maintained. Data mappings and trans-
formation-constraints can be configured and maintained as well.

• Security configurations—an administration framework should provide
facilities for managing security constraints and policies. User account
information, transport-level security such as SSL, message-level security
(WS-Security, encryption/decryption, and so on) for messages and data
transfers, and certificates all need to be managed.

From the Library of John Jeffrey Hanson

ptg31978834

134 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

Mashup Administration Consoles

Mashup administration consoles must present interfaces for managing configu-
ration data and for maintaining the items described previously. However, a
mashup administration console should also present mechanisms for mashup
page or application maintenance and deployment as well.

An effective mashup administration console is accessible from the web and
provides the ability to install and uninstall new mashups and mashup pages on-
the-fly. Interfaces for managing the lifecycle of mashup components, pages, and
applications should also be presented by an administration console.

Visual orchestration tools where mashups can actually be constructed using
drag-and-drop interfaces and property editors are often found in the same con-
text as mashup administration consoles.

Administration consoles are often used to get a global view of the mashup
infrastructure including views displaying alerts, errors, availability metrics, and
performance metrics. Interfaces for taking actions necessary to correct errors
and preempt critical situations can also be presented by mashup administration
consoles.

Managing policies and standards compliance requires interfaces that can be
presented by a mashup administration console. This encroaches on the area of
governance within a mashup infrastructure, which is subject worthy of a sepa-
rate discussion.

Governance in a Mashup Infrastructure

The creation, maintenance, and enforcement of lifecycles, policies, and stan-
dards compliance, often referred to as infrastructure governance, is essential for
an enterprise mashup infrastructure. It is also a complex area of concern for a
mashup infrastructure. Due to the dynamic nature of a mashup infrastructure,
services, components, and mashup pages are constantly changing with new
content and components frequently being introduced.

An important activity of mashup infrastructure governance takes place when
the governance framework is powerful and comprehensive enough to provide
sufficient policy and standards enforcement without being too restrictive,
thereby inhibiting creativity and production.

Providing measures to ensure governance of security across the mashup
infrastructure is a complex task in itself. You must be certain to not only secure
your internal components and services, but you must also be certain to secure
data that is often transmitted from your mashup pages or components to exter-
nal sites and pages. A centralized framework where requests and data transfers

From the Library of John Jeffrey Hanson

ptg31978834

GOVERNANCE IN A MASHUP INFRASTRUCTURE 135

are directed is often used to act as the enforcement agent of business policies
and security.

Figure 4.3 illustrates a typical mediation framework that interacts with a
governance framework to enforce security, privacy, and standards compliance.

As illustrated in Figure 4.3, a mediation framework can interact with a gov-
ernance framework for enforcement of such things as data security, data pri-
vacy, and standards compliance.

Another aspect of mashup governance involves monitoring the creation and
maintenance of mashups themselves. This aspect is responsible for overseeing

Figure 4.3 Mediation framework interrelating with governance framework

Governance Framework

Standards
Compliance

Module

Privacy
Module

Security
Module

Monitoring
Framework

Service
Framework

Mashup Server

Mediation
Framework

Governance
Module
Factory

outbound
data

events

events

inbound
data

Transformation
Framework

Event Protocol
Adapter

Event Protocol
Adapter

Security
Modules

Logging and Auditing
Framework

Event Protocol
Adapter

Event Protocol
Adapter

Logging
Modules

Event Protocol
Adapter

Event Protocol
Adapter

Auditing
Modules

Auditing Module
Factory

Logging Module
Factory

Transformation
Module
Factory

From the Library of John Jeffrey Hanson

ptg31978834

136 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

and enforcing which individuals have permission to create or enforce mashups.
This is typically an exercise in role definitions and access management.

Some of the components of an effective governance framework include

• A registry or catalog to store and maintain services and mashup compo-
nents to facilitate service or component discovery and reuse, and to allow
related services or components to be discovered

• Mechanisms to facilitate policy enforcement across services, UI compo-
nents, and data

• Mechanisms to facilitate validations and policy enforcement as data trans-
fers and service requests transpire throughout the mashup infrastructure

• Tools and mechanisms to facilitate management of the lifecycle of services
used within the mashup infrastructure

Some of the tasks central to your mashup component lifecycle governance
process are as follows:

• Define services, resources, and UI components—Services, resources, and
UI components must be discovered, designed, implemented, tested, and
managed. Since mashup services, resources, and UI components will be
accessed from a multitude of clients and in a vast number of scenarios,
interface design is particularly important to ensure the greatest flexibility
and stability.

• Test services, resources, and UI components—Services, resources, and UI
components must be tested in a variety of ways to ensure asserted behav-
ior performs in most any scenario. Be sure to test services, resources, and
components in many composite applications and pages.

• Manage the lifecycle for services, resources, and components—Deploy-
ment of services, resources, and components can be a fragile process since
the services, resources, and components may have direct and indirect
dependencies from many diverse clients. It is important to maintain exist-
ing dependencies while applying new deployments with bug fixes and fea-
ture enhancements. A savvy versioning strategy is critical to ensure proper
dependency management.

• Manage security of services, resources, and UI components—Maintaining
a secure environment for deployment, maintenance, and invocations of
your services, resources, and UI components is very important. You must

From the Library of John Jeffrey Hanson

ptg31978834

INTERFACES AND APIS FOR SERVICES, RESOURCES, AND UI COMPONENTS 137

ensure that only authorized individuals have rights to deploy and maintain
each item. You must also ensure that only authorized clients invoke or
access the services, resources, and UI components.

Since services, resources, and UI components can be shared among multiple
applications and pages, a single bottleneck or point of failure can have a tragic
ripple effect. It is therefore important to have a comprehensive monitoring
framework in place along with easy-to-use administration consoles. The frame-
work and consoles should allow administrators to monitor the global mashup
infrastructure along with allowing a fine-grained view of each individual ser-
vice, resource, and UI component providing details about performance, stabil-
ity, and their current state. Service level agreements (SLAs) will depend greatly
on your monitoring framework.

Interfaces and APIs for Services, Resources, and UI
Components

Determining the proper interface for a service, resource, or UI component can
have a tremendous impact on the usability of your mashup infrastructure. Since
mashups depend on aggregating and orchestrating existing services, resources,
and UI components, proper public interfaces are very important to a mashup
infrastructure.

UI Component Interfaces

The interfaces for your mashup infrastructure’s UI components are often the
first point of access into the infrastructure. UI components are combined and
orchestrated to form new functionality and new applications. It is therefore
important that the interface for each UI component gives a clear depiction of
what the component actually does. The interface of a component along with
any documentation or descriptions should identify the functionality of the com-
ponent along with some of the side effects from using the component. Side
effects can be things such as whether the component changes the state of other
software modules within the infrastructure or whether the component alters
other components on the mashup page or within the mashup application.

Service Interfaces

Services can be invoked locally or remotely by service consumers. Interfaces can
be applied to individual services to best suit the invocation model. For example,

From the Library of John Jeffrey Hanson

ptg31978834

138 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

the interfaces published for local invocations are often more fine grained than
interfaces published for remote invocations.

The transport protocol can have an effect on the interface by which a service
is invoked. If the service is to be invoked across a TCP/IP network running the
HTTP protocol, the interface must be compatible with a request/response inter-
action. To avoid continual network interplay, coarse-grained interfaces are
often advocated for remote service invocations. Service invocations that send
and return entire documents—typically XML-based documents—have become
popular for many service invocations because of the inherent nature of this doc-
ument-style interaction to be coarse grained.

Services available for remote invocation must be careful to serve clients in a
timely manner to avoid adding to the response time delay inherent with net-
worked communications. This requirement is often realized using some form of
service instance pooling mechanism and stateless conversations between service
consumer and service. In a stateless conversation, information from one request
to another—that is, session information—is not maintained. This requires that
each invocation carry with it the necessary information for the service to under-
stand the entire semantics and goal of the invocation without regard to prior
events.

Asynchronous service interfaces are beneficial in that invocations on the ser-
vice can take place without noticeable blocking taking place in the consumer
application or page. However, asynchronous interactions are not yet standard
for an HTTP communication model. A number of mechanisms (AJAX polling,
HTTP streaming, and HTML five server-sent events, for example) are seeking
to solve and standardize this model.

Resource Interfaces

Mashup interactions are often interested in the exchange of data from one or
more hosts. Data is often referred to as a resource. Therefore, it is important to
provide coherent interfaces for resources exposed by your mashup infrastruc-
ture. A good model to follow is defined by the Representational State Transfer
(REST), a resource-oriented architecture defined in a dissertation by Roy Tho-
mas Fielding.

REST is a model for interaction with resources based on a common, finite set
of methods. For the HTTP protocol, this is embodied by the methods GET, POST,
PUT, DELETE, and sometimes HEAD. In a REST-based application or interaction,
resources are identified are by a URI. The response for REST-based invocation
is referred to as a representation of the resource.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 139

REST is often realized using HTTP methods in the following manner: Create
the resource (PUT), retrieve a representation of the resource (GET), delete the
resource (DELETE), modify the resource (POST), and retrieve metadata about the
resource (HEAD).

One of the primary issues with resource-oriented design is the problem of
what should be considered a resource. A resource is often defined as any entity
that can be directly referenced with a URI. Using this definition, anything that
can be retrieved using a URI can be considered a resource. What an underlying
infrastructure does to create the resource representation is of no concern to the
resource consumer as long as the interface depicts a discrete and concrete chunk
of data.

The interface for your mashup resources should be embodied represented as
clearly defined URIs. Properly defined URIs for your mashup resources result in
a more agile and usable infrastructure. An effective resource URI should include
a unique name that identifies the resource clearly. Context information for the
resource should be included in the URI if possible. For example, an individual
user resource might be included in a context of users in the following manner:
http://www.example.com/users/jdoe.

Building Mediation and Monitoring Frameworks
for Mashups

As defined in the previous sections, mediation and monitoring are essential
frameworks for an effective mashup infrastructure. This section applies the
concepts of this chapter to the construction of a mashup.

The Mediation Framework

A mashup mediation framework provides components through which messages
and/or data can flow to be augmented as needed to address business require-
ments. Figure 4.4 shows classes for a simple mediation framework along with
their relationships to each other.

As illustrated in Figure 4.4, a message (or data item) is the central figure in a
mediation framework. A mediator class is an aggregation of a number of com-
ponents that are used to perform the necessary augmentation duties, such as
transformation, logging, and auditing, on the message or data item.

From the Library of John Jeffrey Hanson

http://www.example.com/users/jdoe

ptg31978834

140 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

Figure 4.5 illustrates the sequence of interactions as a data item travels
through this simple mediation framework.

In Figure 4.5, a message client creates a message that is then passed to a
mediator instance to be augmented. A mediator factory is used to create the
mediator instance. The specific mediator instance can be created based on con-
figuration constraints, data producer attributes, message content or type, or a
combination of all of the above.

Listing 4.1 shows a simple Java message client and the flow of control for
creating a message and a mediator instance and for invoking the mediator to
augment the message.

Figure 4.4 Class diagram for mediation framework

+ SecurityModule

+ methods
fields

+ AuditModule

+ methods
fields

+ TransformModule

+ methods
fields

+ LoggingModule

+ methods
fields

+ MediatorFactory

+ methods
 constructors
 fields

+ TransformModuleFactory

+ methods
 constructors
 fields

+ LoggingModuleFactory

+ methods
 constructors
 fields+ SecurityModuleFactory

+ methods
 constructors
 fields

+ AuditModuleFactory

+ methods
 constructors
 fields

+ Mediator

+ methods
fields

+ Message

+ methods
fields

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 141

Listing 4.1 The Message Mediator Client
private void mediateMessage()
{
 Message message = new SimpleMessage("application/rdf+xml");
 message.setContent(RDF_CONTENT);

 try
 {
 System.setProperty("com.jeffhanson.audit.module",
 SimpleAuditModule.class.getName());
 System.setProperty("com.jeffhanson.logging.module",
 SimpleLoggingModule.class.getName());
 System.setProperty("com.jeffhanson.mediator",
 SimpleMediator.class.getName());
 Mediator mediator = MediatorFactory.newMediator();
 mediator.mediate(message);
 System.out.println("\nMediated message:\n"
 + message.getContent());
 }

Figure 4.5 Sequence diagram for mediation framework

MediatorFactory MediatorMessageClient

1.1:setContent

1.5:newMediator

1.5.1:getProperty

1.5.2:initialize

1.7:getContent

1.6:mediate

Message System

1.2:setProperty1.2:setProperty

1.3:setProperty1.3:setProperty

1.4:setProperty1.4:setProperty

1.2:setProperty

1.3:setProperty

1.4:setProperty

From the Library of John Jeffrey Hanson

ptg31978834

142 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 catch (Throwable t)
 {
 t.printStackTrace();
 }
}

As shown in Listing 4.1, the mediateMessage method of a message client creates
a new RDF-based message. The message client then creates a mediator using a
mediator factory, which uses a class name defined by a system property. The
message client then passes the message to the mediator instance where it is aug-
mented. The processed message is then ready to be used by its intended destina-
tion target. In this instance the target is simply the console display.

Listing 4.2 shows a simple mediator factory and the flow of control for cre-
ating a mediator instance.

Listing 4.2 The Mediator Factory
public class MediatorFactory
{
 public static Mediator newMediator()
 throws MediatorFactoryException
 {
 String mediatorClsName =
 System.getProperty("com.jeffhanson.mediator");
 if (null == mediatorClsName || mediatorClsName.length() <= 0)
 {
 throw new
 MediatorFactoryException("Mediator property not set");
 }

 try
 {
 Class cls = Class.forName(mediatorClsName);
 if (Mediator.class.isAssignableFrom(cls))
 {
 Object obj = cls.newInstance();
 Mediator mediator = (Mediator)obj;
 mediator.initialize();
 return mediator;
 }
 else
 {
 throw new
 MediatorFactoryException("Mediator system property "
 + "is not derived from the Mediator class");
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 143

 catch (Exception e)
 {
 throw new MediatorFactoryException(e);
 }
 }
}

As shown in Listing 4.2, the mediator factory dynamically creates a new
mediator instance using a class name set in a system property. The name could
also be retrieved from configuration data found on the file system or a data-
base. A default class name could be made available if desired to fulfill a situa-
tion where no alternative class name is provided.

Listing 4.3 shows a simple mediator interface and the methods by which
individual mediation modules can be set using inversion of control (IoC) to
populate each mediator instance.

Listing 4.3 The Mediator Interface
public interface Mediator
{
 void initialize();

 void mediate(Message message)
 throws MediationException;

 void setAuditModule(AuditModule auditModule);

 void setLoggingModule(LoggingModule loggingModule);

 void setSecurityModule(SecurityModule securityModule);

 void setTransformModule(TransformModule transformModule);
}

As shown in Listing 4.3, the mediator interface provides a method by which
a mediator instance is initialized. The interface also provides setter methods
that can be called by a mediator factory or other software component to set the
individual mediation modules as needed.

Listing 4.4 shows a simple mediator and the steps it uses to process a given
message using individual mediation modules.

Listing 4.4 A Simple Mediator Implementation
public class SimpleMediator
 implements Mediator
{
 private AuditModule auditModule = null;
 private LoggingModule loggingModule = null;

From the Library of John Jeffrey Hanson

ptg31978834

144 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 private SecurityModule securityModule = null;
 private TransformModule transformModule = null;

 public SimpleMediator()
 {
 }

 public SimpleMediator(AuditModule auditModule,
 LoggingModule loggingModule,
 SecurityModule securityModule,
 TransformModule transformModule)
 {
 this.auditModule = auditModule;
 this.loggingModule = loggingModule;
 this.securityModule = securityModule;
 this.transformModule = transformModule;
 }

 public void initialize()
 {
 }

 public void setAuditModule(AuditModule auditModule)
 {
 this.auditModule = auditModule;
 }

 public void setLoggingModule(LoggingModule loggingModule)
 {
 this.loggingModule = loggingModule;
 }

 public void setSecurityModule(SecurityModule securityModule)
 {
 this.securityModule = securityModule;
 }

 public void
 setTransformModule(TransformModule transformModule)
 {
 this.transformModule = transformModule;
 }

 public void mediate(Message message)
 throws MediationException
 {
 try
 {
 if (null == auditModule)

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 145

 {
 auditModule =
 AuditModuleFactory.getAuditModule(message);
 }

 if (null == loggingModule)
 {
 loggingModule =
 LoggingModuleFactory.getLoggingModule(message);
 }

 if (null == securityModule)
 {
 securityModule =
 SecurityModuleFactory.getSecurityModule(message);
 }

 if (null == transformModule)
 {
 transformModule =
 TransformModuleFactory.getTransformModule(message);
 }

 auditModule.processInboundMessage(message);
 loggingModule.processInboundMessage(message);
 securityModule.processInboundMessage(message);
 transformModule.processInboundMessage(message);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 throw new MediationException(e);
 }
 }
}

In Listing 4.4, the mediator uses aggregation to process a given message
passed to mediation modules previously set in the mediator instance.

Listing 4.5 shows an implementation of an audit module factory. It illus-
trates the steps taken to create the audit module instance and to initialize the
instance.

Listing 4.5 The Message-Agnostic Audit Module Factory
public class AuditModuleFactory
{
 public static AuditModule getAuditModule(Message message)
 throws AuditModuleFactoryException
 {

From the Library of John Jeffrey Hanson

ptg31978834

146 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 String auditModuleClsName =
 System.getProperty("com.jeffhanson.audit.module");
 if (null == auditModuleClsName ||
 auditModuleClsName.length() <= 0)
 {
 throw new
 AuditModuleFactoryException("AuditModule property "
 + "is not set");
 }

 try
 {
 Class cls = Class.forName(auditModuleClsName);
 if (AuditModule.class.isAssignableFrom(cls))
 {
 Object obj = cls.newInstance();
 AuditModule auditModule = (AuditModule)obj;
 auditModule.initialize();
 return auditModule;
 }
 else
 {
 throw new
 AuditModuleFactoryException("Audit module property "
 + " not derived from the AuditModule class");
 }
 }
 catch (Exception e)
 {
 throw new AuditModuleFactoryException(e);
 }
 }
}

As shown in Listing 4.5, the audit module factory dynamically creates a new
audit module instance using a class name set in a system property. The name
could also be retrieved from configuration data found on the file system or a
database. A default class name could be made available if desired to fulfill a sit-
uation where no alternative class name is provided.

Listing 4.6 shows an implementation of a security module factory. It illus-
trates the steps taken to create the security module instance and to initialize the
instance.

Listing 4.6 The Message-Specific Security Module Factory
public class SecurityModuleFactory
{
 public static
 SecurityModule getSecurityModule(Message message)

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 147

 throws SecurityModuleFactoryException
 {
 try
 {
 Class cls = classForMessageType(message);
 if (SecurityModule.class.isAssignableFrom(cls))
 {
 Object obj = cls.newInstance();
 SecurityModule securityModule = (SecurityModule)obj;
 securityModule.initialize();
 return securityModule;
 }
 else
 {
 throw new
 SecurityModuleFactoryException("Security module class"
 + " not derived from SecurityModule");
 }
 }
 catch (Exception e)
 {
 throw new SecurityModuleFactoryException(e);
 }
 }

 private static Class classForMessageType(Message message)
 throws SecurityModuleFactoryException
 {
 String contentType = message.getContentType();

 if (contentType.equalsIgnoreCase("application/rdf+xml"))
 {
 return RDFSecurityModule.class;
 }

 throw new
 SecurityModuleFactoryException("Unknown message type "
 + "encountered in SecurityModuleFactory");
 }
}

As shown in Listing 4.6, the security module factory dynamically creates a
new audit module instance using a class specifically intended for the type of
message content. A default class could be made available if desired to fulfill a
situation where no alternative class is found.

Listing 4.7 shows an implementation of a simple audit module and illustrates
the steps it takes to process a given message.

From the Library of John Jeffrey Hanson

ptg31978834

148 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

Listing 4.7 A Simple Audit Module Implementation
public class SimpleAuditModule
 implements AuditModule
{
 public void initialize()
 {
 }

 public void processInboundMessage(Message message)
 throws AuditModuleException
 {
 if (null == message.getContentType() ||
 message.getContentType().length() <= 0)
 {
 throw new
 AuditModuleException("Message content type is not set");
 }

 if (null == message.getContent() ||
 message.getContent().length() <= 0)
 {
 throw new
 AuditModuleException("Message content is not set");
 }
 }
}

As shown in Listing 4.7, the audit module class uses the processInboundMessage to
receive messages for which it will augment. The only processing performed in
this case is to validate the message content type and the message content length.

Listing 4.8 shows an implementation of a transformation module that han-
dles RDF data. It illustrates the steps it takes to process a given message and do
a simple transformation by replacing the email address in a given message.

Listing 4.8 A Transform Module Implementation for RDF Message Content
public class RDFTransformModule
 implements TransformModule
{
 public void initialize()
 {
 }

 public void processInboundMessage(Message message)
 throws TransformModuleException
 {
 if (message.getContentType().
 equalsIgnoreCase("application/rdf+xml") == false)
 {

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 149

 throw new
 TransformModuleException("Invalid content type: "
 + message.getContentType());
 }

 String content = message.getContent();

 InputStream inStream = null;

 try
 {
 URL url =
 new URL("http://example.org/enterprise/mashups");
 inStream = new ByteArrayInputStream(content.getBytes());
 final Graph rdfMemGraph =
 SortedMemoryJRDFFactory.getFactory().getNewGraph();
 Parser parser = new GraphRdfXmlParser(rdfMemGraph);
 parser.parse(inStream, EscapeURL.toEscapedString(url));

 ClosableIterator<Triple> iter = null;

 try
 {
 iter = rdfMemGraph.find(AnySubjectNode.ANY_SUBJECT_NODE,
 AnyPredicateNode.ANY_PREDICATE_NODE,
 AnyObjectNode.ANY_OBJECT_NODE);
 while (iter.hasNext())
 {
 Triple triple = iter.next();
 if (triple.getObject().
 toString().contains("@example.org"))
 {
 String objectStr = triple.getObject().toString();
 objectStr =
 objectStr.replace("@example.org",
 "@jeffhanson.com");
 if (objectStr.startsWith("\""))
 {
 objectStr = objectStr.substring(1);
 }
 if (objectStr.endsWith("\""))
 {
 objectStr = objectStr.substring(0,
 objectStr.length() - 1);
 }

 rdfMemGraph.add(triple.getSubject(),
 triple.getPredicate(),
 new LiteralImpl(objectStr));

From the Library of John Jeffrey Hanson

ptg31978834

150 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 rdfMemGraph.remove(triple);
 }
 }

 iter.close();
 iter = null;

 ByteArrayOutputStream outStream =
 new ByteArrayOutputStream();
 MemRdfXmlWriter writer = new MemRdfXmlWriter();
 writer.write(rdfMemGraph, outStream);

 message.setContent(outStream.toString());
 }
 finally
 {
 if (null != iter)
 {
 iter.close();
 }
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 finally
 {
 if (null != inStream)
 {
 try
 {
 inStream.close();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
 }
 }
}

As shown in Listing 4.8, the RDFTransformModule class uses the processInboundMes-
sage to receive messages for which it will augment. In this case the graph for an
RDF message is traversed to find email addresses in which the hosts for the
addresses are modified.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 151

The Monitoring Framework

A mashup monitoring framework provides components that produce events
containing data of interest to monitoring tools and consoles. This includes
alerts, threshold-limit breaches, errors, warnings, and other events. Figure 4.6
shows classes for a simple monitory framework along with their relationships
to each other.

As illustrated in Figure 4.6, management events are the central figures in a
monitoring framework. Event sources are embodied by the ManagementEventSource
interface. An event manager class uses protocol adapters to enable it to receive
events remotely from management event sources across multiple protocols. The
event manager then publishes events to administration console classes, in this
case a command-line console class.

Figure 4.6 Class diagram for monitoring framework

ROM EventSourceListener

+ methods

extends EventListener
fields

ROM EventSourceListener

+ methods

extends EventListener
fields

+ EventManagerFactory

+ methods
 constructors
 fields

+ CmdLineAdminConsole

+ methods
 constructors
 fields

+ ManagementEventSource

+ methods
fields

+ EventManager

+ methods
fields

+ EventCollectorModule

+ methods
fields

+ EventProtocolAdapter

+ methods
fields

+ EventReportingAgent

+ methods
fields

+ EventManagerListener

+ methods

extends EventListener
fields

+ ManagementEvent extends EventObject

+ methods
+ constructors
+ fields

+ ProtocolAdapterListener

+ methods

extends EventListener
fields

+ EventSourceListener

+ methods

extends EventListener
fields

+ ProtocolAdapterEvent extends EventObject

+ methods
+ constructors
+ fields

+ EventSourceEvent extends EventObject

+ methods
+ constructors
+ fields

+ SimpleEventManager

+ methods
+ constructors
+ fields

implements EventManager
ProtocolAdapterListener
Runnable

+ LocalProtocolAdapter

+ methods
+ constructors
+ fields

implements EventProtocolAdapter
Runnable
EventSourceListener

LocalProtocolAdapter.ElapsedTimeEventSource

+ methods
constructors

+ fields

implements ManagementEventSource

implements EventManagerListener

From the Library of John Jeffrey Hanson

ptg31978834

152 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

Listing 4.9 shows part of a simple command-line console daemon class and
the flow of control for creating an event manager and for receiving events from
the event manager.

Listing 4.9 An Implementation of a Command-Line admin Console
 private void monitorEvents()
 throws EventManagerFactoryException, EventManagerException
 {
 System.setProperty("com.jeffhanson.event.manager",
 SimpleEventManager.class.getName());
 final EventManager evtMgr =
 EventManagerFactory.newEventManager();
 evtMgr.addEventManagerListener(this);

 Runtime.getRuntime().addShutdownHook(new Thread()
 {
 public void run()
 {
 try
 {
 evtMgr.stop();
 }
 catch (EventManagerException e)
 {
 e.printStackTrace();
 }

 System.out.println("Command-line admin console stopped");
 }
 });

 System.out.println("Command-line admin console started");
 evtMgr.start();
 }

 public void eventOccurred(ManagementEvent evt)
 {
 System.out.println("Encountered event: timestamp ["
 + evt.getTimeStamp() + "], type ["
 + evt.getType() + "], content ["
 + evt.getContent() + "], source ["
 + evt.getSource() + "]");
 }

As illustrated in Listing 4.9 the monitorEvents method of a simple command-
line console daemon class creates an event manager and then adds itself as a lis-
tener to the event manager. As events are received by the event manager, they

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 153

are published to interested listeners. In this case, they will be published to the
command-line console.

Listing 4.10 shows an example of output from the command-line console
daemon class as events are received from the event manager.

Listing 4.10 Output from Command-Line admin Console
Encountered management event:
 timestamp [Sun Aug 03 23:29:20 MDT 2008],
 type [TIME_ELAPSED],
 content [Elapsed milliseconds: 5002],
 source [ElapsedTimeEventSource]
Encountered management event:
 timestamp [Sun Aug 03 23:29:25 MDT 2008],
 type [TIME_ELAPSED],
 content [Elapsed milliseconds: 5000],
 source [ElapsedTimeEventSource]
Encountered management event:
 timestamp [Sun Aug 03 23:29:30 MDT 2008],
 type [TIME_ELAPSED],
 content [Elapsed milliseconds: 5000],
 source [ElapsedTimeEventSource]
Encountered management event:
 timestamp [Sun Aug 03 23:29:35 MDT 2008],
 type [TIME_ELAPSED],
 content [Elapsed milliseconds: 5000],
 source [ElapsedTimeEventSource]

As illustrated in Listing 4.10, the events received by the event manager are
published to the command-line console. In this case, the only management
event source happens to just publish time-lapse events. Therefore, as time-lapse
events occur, the console is notified and the events are displayed.

Listing 4.11 shows an implementation of an event manager factory. It illus-
trates the steps taken to create an event manager instance and to initialize the
instance.

Listing 4.11 The Event Manager Factory
public class EventManagerFactory
{
 public static EventManager newEventManager()
 throws EventManagerFactoryException
 {
 String evtMgrClsName =
 System.getProperty("com.jeffhanson.event.manager");
 if (null == evtMgrClsName || evtMgrClsName.length() <= 0)
 {
 throw new

From the Library of John Jeffrey Hanson

ptg31978834

154 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 EventManagerFactoryException("EventManager system "
 + "property is not set");
 }

 try
 {
 Class cls = Class.forName(evtMgrClsName);
 if (EventManager.class.isAssignableFrom(cls))
 {
 Object obj = cls.newInstance();
 EventManager evtMgr = (EventManager)obj;
 evtMgr.initialize();
 return evtMgr;
 }
 else
 {
 throw new EventManagerFactoryException(
 "EventManager system "
 + " property is not derived from "
 + "the EventManager class");
 }
 }
 catch (Exception e)
 {
 throw new EventManagerFactoryException(e);
 }
 }
}

As shown in Listing 4.11, the event manager factory dynamically creates a
new event manager instance using a class name set in a system property. The
name could also be retrieved from configuration data found on the file system
or a database. A default class name could be made available if desired to fulfill
a situation where no alternative class name is provided.

Listing 4.12 snippet shows a simple event manager and the steps it uses to
receive management events and to distribute the events to interested listeners.

Listing 4.12 A Simple Event Manager Implementation
public class SimpleEventManager
 implements EventManager,
 ProtocolAdapterListener,
 Runnable
{
 private ArrayList<EventProtocolAdapter>eventProtocolAdapters =
 new ArrayList<EventProtocolAdapter>();
 private ArrayList<EventManagerListener> listeners =
 new ArrayList<EventManagerListener>();

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 155

 private Thread workerThread = null;
 private boolean running = false;

 public SimpleEventManager()
 {
 EventProtocolAdapter protocolAdapter =
 new LocalProtocolAdapter();
 eventProtocolAdapters.add(protocolAdapter);
 protocolAdapter.addEventReceivedListener(this);
 }

 public
 SimpleEventManager(EventProtocolAdapter[] protocolAdapters)
 {
 eventProtocolAdapters.addAll(Arrays.
 asList(protocolAdapters));
 }

 public void run()
 {
 running = true;

 System.out.println("SimpleEventManager started");

 while (running)
 {
 Thread.yield();
 }

 System.out.println("SimpleEventManager stopped");

 running = false;
 }

 public void
 addProtocolAdapter(EventProtocolAdapter protocolAdapter)
 {
 eventProtocolAdapters.add(protocolAdapter);
 if (running)
 {
 try
 {
 protocolAdapter.start();
 }
 catch (EventProtocolAdapterException e)
 {
 e.printStackTrace();
 }
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

156 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 public void
 removeProtocolAdapter(EventProtocolAdapter protocolAdapter)
 {
 int idx = eventProtocolAdapters.indexOf(protocolAdapter);
 if (idx >= 0)
 {
 try
 {
 protocolAdapter.stop();
 }
 catch (EventProtocolAdapterException e)
 {
 e.printStackTrace();
 }
 eventProtocolAdapters.remove(protocolAdapter);
 }
 }

 public void initialize()
 throws EventManagerException
 {
 }

 public void
 addEventManagerListener(EventManagerListener listener)
 {
 listeners.add(listener);
 }

 public void start()
 throws EventManagerException
 {
 Iterator<EventProtocolAdapter> iter =
 eventProtocolAdapters.iterator();
 while (iter.hasNext())
 {
 EventProtocolAdapter eventProtocolAdapter = iter.next();
 try
 {
 eventProtocolAdapter.start();
 }
 catch (EventProtocolAdapterException e)
 {
 e.printStackTrace();
 throw new EventManagerException(e);
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 157

 workerThread = new Thread(this);
 workerThread.start();
 }

 public void stop()
 throws EventManagerException
 {
 Exception exception = null;

 Iterator<EventProtocolAdapter> iter =
 eventProtocolAdapters.iterator();
 while (iter.hasNext())
 {
 EventProtocolAdapter eventProtocolAdapter = iter.next();
 try
 {
 eventProtocolAdapter.stop();
 }
 catch (EventProtocolAdapterException e)
 {
 e.printStackTrace();
 exception = e;
 }
 }

 running = false;

 if (null != exception)
 {
 throw new EventManagerException(exception);
 }
 }

 public void eventOccurred(ProtocolAdapterEvent evt)
 {
 ManagementEvent mgmtEvt =
 new ManagementEvent(evt.getSource(),
 evt.getTimeStamp(),
 evt.getType(),
 evt.getContent());

 Iterator<EventManagerListener> iter = listeners.iterator();
 while (iter.hasNext())
 {
 EventManagerListener listener = iter.next();
 listener.eventOccurred(mgmtEvt);
 }
 }
}

From the Library of John Jeffrey Hanson

ptg31978834

158 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

In Listing 4.12, the event manager uses one protocol adapter to receive
events occurring in the same/local process. The event manager then runs in its
own thread to listen for events passed to it from the protocol adapter.

Listing 4.13 shows the local protocol adapter and the steps it uses to receive
management events from event sources and to distribute the events to interested
listeners.

Listing 4.13 An Event Protocol Adapter for In-Process (Local) Events
public class LocalProtocolAdapter
 implements EventProtocolAdapter,
 Runnable,
 EventSourceListener
{
 // an event source class that reports time lapses
 //
 private static class ElapsedTimeEventSource
 implements ManagementEventSource
 {
 private static final String EVENT_TYPE = "TIME_ELAPSED";

 private ArrayList<EventCollectorModule> collectors =
 new ArrayList<EventCollectorModule>();
 private EventReportingAgent eventReportingAgent = null;
 private Date lastTimestamp = new Date();
 private Timer timer = null;

 public void
 setEventReportingAgent(EventReportingAgent evtAgent)
 {
 this.eventReportingAgent = evtAgent;
 }

 public void
 addEventCollectorModule(EventCollectorModule evtModule)
 {
 collectors.add(evtModule);
 }

 public void
 removeEventCollectorModule(EventCollectorModule
 eventCollectorModule)
 {
 collectors.remove(eventCollectorModule);
 }

 public void start()
 {
 TimerTask timerTask = new TimerTask()

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 159

 {
 public void run()
 {
 Date currentTimestamp = new Date();
 long elapsedMillis =
 currentTimestamp.getTime() - lastTimestamp.getTime();
 EventSourceEvent evt =
 new EventSourceEvent("ElapsedTimeEventSource",
 new Date(),
 EVENT_TYPE,
 "Elapsed milliseconds: "
 + elapsedMillis)
 eventReportingAgent.reportEvent();
 lastTimestamp = currentTimestamp;
 }
 };

 timer = new Timer();
 timer.schedule(timerTask, 5000, 5000);

 System.out.println("ElapsedTimeEventSource started");
 }

 public void stop()
 {
 if (null != timer)
 {
 timer.cancel();
 timer = null;
 }

 System.out.println("ElapsedTimeEventSource stopped");
 }
 }

 // ======================================
 // member fields
 // ======================================

 private ArrayList<ManagementEventSource> eventSources =
 new ArrayList<ManagementEventSource>();
 private ArrayList<ProtocolAdapterListener> listeners =
 new ArrayList<ProtocolAdapterListener>();
 private boolean running = false;
 private Thread workerThread = null;

 public LocalProtocolAdapter()
 {

From the Library of John Jeffrey Hanson

ptg31978834

160 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 ManagementEventSource eventSource =
 new ElapsedTimeEventSource();

 this.eventSources.add(eventSource);

 // create a reporting agent that reports events
 // as local method calls
 //
 eventSource.setEventReportingAgent(new EventReportingAgent()
 {
 public void reportEvent(EventSourceEvent evt)
 {
 eventOccurred(evt);
 }
 });
 }

 public
 LocalProtocolAdapter(ManagementEventSource[] eventSources)
 {
 this.eventSources.addAll(Arrays.asList(eventSources));
 }

 public void run()
 {
 running = true;

 System.out.println("LocalProtocolAdapter started");

 while (running)
 {
 Thread.yield();
 }

 System.out.println("LocalProtocolAdapter stopped");

 running = false;
 }

 public void initialize()
 throws EventProtocolAdapterException
 {
 }

 public void
 addEventReceivedListener(ProtocolAdapterListener listener)
 {
 listeners.add(listener);
 }

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING MEDIATION AND MONITORING FRAMEWORKS FOR MASHUPS 161

 public void
 removeEventReceivedListener(ProtocolAdapterListener listener)
 {
 listeners.remove(listener);
 }

 public void start()
 throws EventProtocolAdapterException
 {
 Iterator<ManagementEventSource> iter =
 eventSources.iterator();
 while (iter.hasNext())
 {
 ManagementEventSource eventSource = iter.next();
 eventSource.start();
 }

 workerThread = new Thread(this);
 workerThread.start();
 }

 public void stop()
 throws EventProtocolAdapterException
 {
 Iterator<ManagementEventSource> iter =
 eventSources.iterator();
 while (iter.hasNext())
 {
 ManagementEventSource eventSource = iter.next();
 eventSource.stop();
 }

 running = false;
 }

 public void eventOccurred(EventSourceEvent evt)
 {
 ProtocolAdapterEvent protocolAdapterEvt =
 new ProtocolAdapterEvent(evt.getSource(),
 evt.getTimeStamp(),
 evt.getType(),
 evt.getContent());

 Iterator<ProtocolAdapterListener> iter =
 listeners.iterator();
 while (iter.hasNext())
 {
 ProtocolAdapterListener listener = iter.next();

From the Library of John Jeffrey Hanson

ptg31978834

162 CHAPTER 4 FUNDAMENTAL CONCERNS FOR ENTERPRISE MASHUPS

 listener.eventOccurred(protocolAdapterEvt);
 }
 }
}

In Listing 4.13, the event manager receives events from one event source, a
time-lapse event source. The protocol adapter runs in its own thread to listen
for events passed to it from the event source. As events are received, the proto-
col adapter passes the events to interested listeners. In a remote protocol
adapter, steps would be taken to distribute the events remotely.

Summary

This chapter discussed some of the most important concerns that all enterprise
mashup infrastructures must address, including information management, gov-
ernance, and system administration. In addition to the typical enterprise appli-
cation concerns, mashup infrastructures must address an environment that
seeks to fulfill dynamic requirements and flexible solutions to business issues.

Managing and sharing data from disparate information sources is a primary
concern for mashup infrastructures. Rather than separating metadata from
data, mashup infrastructures seek to provide a semantically rich environment
where data and metadata are combined to present a more effective means for
applying meaning to information. Therefore, choosing an effective fundamental
format for data within your mashup infrastructure is a primary concern. This
enables consumers of the data and content to create aggregate components and
content much more easily than traditional application environments. Standards
such as XML, microformats, RDF, RDF Schema, and OWL are emerging as
enabling technologies for semantic data interchange.

Mediation is a primary component of mashup infrastructures for enabling
separation of concerns between software components. Mediation frameworks
operate on data as it travels from data producers to data consumers.

Management and monitoring are also essential for administrating and opti-
mizing a mashup infrastructure. The decoupled and segregated nature of a
mashup infrastructure makes the need for an effective management and moni-
toring framework vital.

Mashup governance including the creation, maintenance, and enforcement
of lifecycles, policies, and standards compliance is vital for an effective enter-
prise mashup infrastructure. It is also a complex area of concern for a mashup
infrastructure. Due to the dynamic nature of a mashup infrastructure, services,
components, and mashup pages are constantly changing with new content and
components constantly being introduced.

From the Library of John Jeffrey Hanson

ptg31978834

SUMMARY 163

Determining the proper interface for a service, resource, or UI component
has great impact on the usability of your mashup infrastructure. Since mashups
depend on aggregating and orchestrating existing services, resources, and UI
components, proper public interfaces are very important to a mashup infra-
structure.

The next chapter discusses some patterns that can be applied to a mashup
development environment, and example implementations for some of the pat-
terns are presented.

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

165

Chapter 5

Enterprise Mashup Patterns

Mashup design and implementation share many of the same development issues
as traditional software engineering. Therefore, many of the same techniques
and methodologies that provide successful results to traditional software para-
digms work equally as well with mashup development. Software patterns are
one of the most widely used methodologies in traditional software engineering
and are also strongly suggested as a mechanism for addressing mashup design
and development scenarios.

This chapter discusses some patterns that can be applied to a mashup devel-
opment environment to aid in finding common solutions to typical mashup
problems. All the patterns discussed were created by Michael Ogrinz in his
book Mashup Patterns: Designs and Examples for the Modern Enterprise
(Addison-Wesley, March 2009), and a more detailed discussion of these pat-
terns can be found there. Also presented in this chapter are example implemen-
tations for some of the patterns presented.

An Introduction to Patterns

Software design patterns present tested and proven blueprints for addressing
recurring problems or situations that arise in many different design and devel-
opment scenarios. By defining a design/development solution in terms of a pat-
tern, problems can be solved without the need to rehash the same problem over
and over in an attempt to provide a custom solution each time.

Using design patterns for software development is a concept that was bor-
rowed from architecture as it applied to building homes, workplaces, and cities.
The idea revolved around the concept that looking at problems abstractly pre-
sented common solutions to different architectural problems. The same concept
was applied to software engineering and proved to work equally as well.

Applying patterns to software design and development scenarios really
gained momentum when Erich Gamma, Richard Helm, Ralph Johnson, and

From the Library of John Jeffrey Hanson

ptg31978834

166 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

John Vlissides (The Gang of Four as they are collectively called) introduced
their book Design Patterns: Elements of Reusable Object-Oriented Software.

A software design pattern is typically presented using a standard format con-
taining most of the following items:

• Name and classification—A unique description used to identify the pattern

• Intent—The reason or goal for the pattern

• Motivation and/or applicability—A description of the scenarios or con-
texts in which the pattern applies

• Structure—A graphical depiction of the pattern, such as a class diagram

• Consequences—Side effects and/or results from use of the pattern

• Participants—Classes and/or objects used in the pattern along with their
role in a design

• Related patterns—Other patterns that share a relationship with the pat-
tern along with a discussion of each

• Collaboration—A discussion of the interactions between classes and
objects used in the pattern

• Implementation and/or sample code—An example of a concrete imple-
mentation of the pattern

The Importance of Patterns within a Mashup
Infrastructure

Since mashups address many different, dynamic scenarios and technologies,
finding any sort of common ground on which to base design and implementa-
tion decisions can be a great help to software practitioners.

Mashups can be very data-intensive. Therefore patterns that define common
solutions to the conversion or adaptation of different data formats offer a sub-
stantial benefit to developers. A pattern defining a common solution for enrich-
ing data as the data is transferred from one module to another offers significant
benefits, as well.

Mashups seek to provide rich experiences for client-side users. Therefore,
patterns defining common solutions applied to AJAX, JavaScript, XML, and
CSS can provide benefits to UI developers.

From the Library of John Jeffrey Hanson

ptg31978834

CORE ACTIVITIES OF A MASHUP 167

With many of the processes in a mashup running externally in the Internet
cloud, it is extremely desirable to find common patterns that address issues such
as scalability, security, and manageability within this nebulous environment.

Core Activities of a Mashup

Many of the patterns in a mashup infrastructure can be divided into activities
that describe the core functionality of the infrastructure. These core activities
can be defined in a manner as to describe generic functionality on which most
enterprise mashup infrastructures are based. The patterns in this chapter are
discussed in the context of these core activities.

When analyzing the types of solutions that a mashup infrastructure seeks to
address, developers can gain an understanding of the common scenarios that
are likely to emerge. These scenarios can be dissected to uncover the core activ-
ities that should be presented by the mashup infrastructure.

The directions taken by a development staff may be significantly altered as
the core activities of the mashup infrastructure are discovered. This makes it
important to uncover the core activities of the infrastructure as early as possible
in the analysis stage.

Some of the common core activities that are likely to be discovered in many
mashup design efforts are discussed in the following sections.

Publishing and Promoting Content and Artifacts

With the open communication avenues that the web offers today, it is easy
enough to find an outlet for publishing your opinions and experiences, and/or
for sharing your knowledge. However, finding and enticing an audience is
increasingly difficult as the web becomes more and more flooded with blogs,
sites, and video and audio streams.

The mashup space has introduced a new avenue for publishing that allows
creative-minded individuals to produce exciting new experiences for users and
readers in the consumer realm. Businesses are exploring the enterprise mashup
space and are seeking to capitalize on the wave of excitement of the consumer
mashup space and to implement similar technologies and techniques to pro-
mote and publish business content, as well as products and services. Several
challenges stand in the way of enterprise mashups by which consumer mashups
are not burdened. Not the least of which is the challenge of allowing the open-
ness of the mashup environment to promote creativity for the business model
while managing this openness to ensure compliance and security of business
content and data.

From the Library of John Jeffrey Hanson

ptg31978834

168 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

Semantic Formats and Patterns for Data Access and Extraction

As businesses move to the enterprise mashup space they find that much of their
content and many of their data sources are confined by nonpublic and tightly
coupled data access APIs. It becomes immediately apparent that a standard and
more open data model is needed to expose content and data to mashup tools
and developers. This need for an open, standard data model has led enterprises
to adopt data formats and technologies that present a semantically rich data
interface such as RSS, RDF, microformats, and others.

Semantic data formats and related patterns enable mashup tools and devel-
opers to find and use relevant data and content much easier than traditional
data formats. RSS, RDF, microformats, and others expose data in standard
ways with a great deal of semantic meaning presented with the actual content.
This allows data to be extracted and used in a dynamic fashion to build mash-
ups to serve an ever-changing business environment.

Semantic Formats and Patterns for Data Transfer and Reuse

As applications and pages evolve in the mashup space, data is transferred
between sites, applications, and pages and is used to populate pages and/or UI
artifacts along the way. Data must be transformed to meet the constraints of
each individual page or UI artifact. Transformation of data is needed to adapt
to different security constraints, different form field constraints, and entirely
different data formats.

As with data access and extraction, data transfer and reuse are being facili-
tated by adoption of semantic data formats and related patterns. When data is
presented in a semantically rich model, it is much easier for content to be found
and transformed for reuse. Presenting text content as RSS data allows a soft-
ware component to find the author, subject, and/or content of the text in a stan-
dard way that is not possible with proprietary or nonsemantic data formats.
Presenting user-centric data as an FOAF (friend of a friend) microformat allows
the user’s name, gender, email address, and so on to be reused easily by each
page or UI artifact as the data is transferred from one site to another.

Patterns and Methods for Data Presentation

Once data is extracted, transferred, and transformed it is ready to be presented.
Although not all mashups are graphical (pure data or process mashups, for
example), it is important to understand the patterns and methods used for con-
structing a graphical presentation when needed.

The presentation of data in a mashup can be facilitated with internal or
external APIs, services, and UI artifacts. Both internal and external presentation
methods have advantages and disadvantages.

From the Library of John Jeffrey Hanson

ptg31978834

CORE ACTIVITIES OF A MASHUP 169

Using external APIs (such as Amazon web service APIs and eBay web service
APIs), services, and UI artifacts allows you to take advantage of a much greater
pool of talent than is possible with most internal IT departments. However,
using external APIs, services, and UI artifacts can reduce the workload of your
internal IT staff but requires the transfer of control and sometimes sensitive
data into the hands of third parties. This requires establishing and maintaining
a high degree of trust between your organization and third parties.

Using internal APIs, services, and UI artifacts allows you to control the secu-
rity and compliance of data very closely. It also enables fine-grained control of
the look-and-feel of content as it is presented in a mashup.

Sequences of interval values as found in a time-series related pattern can be
presented easily using external charting services. However, customizing charts
to fit corporate branding may not be possible to the degree needed by a given
company or application. In this case, internal APIs, services, and UI artifacts
must be used to fill the requirement.

Presenting data in map-based UIs using internal resources is just not a possi-
bility for most organizations. Also, enabling a single sign-on solution that spans
multiple sites is by definition only possible using a third-party facility.

Patterns and Methods for Scheduling and Observation

Most enterprises coordinate activities based on data collected from a number of
different places such as branch offices. This data must be collected using notifica-
tions as thresholds are exceeded or on a regular basis using automated batch tasks.

Collecting data using automated tasks promotes a consistent and accurate
view of an organization’s operations without relying on manual intervention.
Periodic execution of a task to collect time-series data can enable accurate
charting capabilities for a mashup that presents views into an organization’s
online computing resources or bandwidth.

Periodic task-execution schedules can be determined by many different factors
such as business hours of operation, geographical constraints, and available
resources. An organization that has geographically dispersed offices typically
needs to collect data from each office at regular intervals. As data is received, a
centralized framework might report changes using an application consisting of
the data and maps generated by a third party. The requirements of the application
may be such that changes must be reported as they happen. This requirement
falls in line with an event-driven framework and can use many of the same pat-
terns applied in a typical event-driven or asynchronous enterprise application.
These patterns include publish-subscribe, command-observer, background-worker,
and others.

From the Library of John Jeffrey Hanson

ptg31978834

170 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

Content Reuse with Clipping

Another core activity is a technique referred to as “clipping,” “screen scrap-
ing,” or “web clipping.” Clipping refers to the process of capturing a portion of
a web site and reusing it in another web page. A clipping or clip can be a single
UI artifact found on a web page, multiple UI artifacts, textual content from the
page, or the entire web page itself. Clipping is typically used to combine subsets
of HTML data/content from external web sites without requiring changes to
the mashup server infrastructure.

Rather than extracting discrete values from a web page, clipping captures UI
artifacts and snippets in a manner that allows the clippings to be reused in
another page. For example, the process of extracting company performance sta-
tistics might return textual content representing values signifying the perfor-
mance data. A clipping would simply return the actual HTML or other markup
to redisplay it on another page.

To unify the process of capturing clippings from multiple, disparate sites,
industry standards (XML, JSON, RDF, and so on) and common transformation
technologies (XSLT, for example) should be supported by your clipping ser-
vices. This helps to facilitate common data formats, HTML tags, and CSS
classes. One such common capability is overriding CSS classes and styles in the
clippings with company-approved classes and styles.

Normalizing Content Using Data/Content Augmentation Patterns

It is rare when you find multiple legacy sites exposing content in a common for-
mat. The inconsistencies can vary from variations in UI artifacts, to CSS styles,
to differences in currencies and languages. A normalized and uniform data stan-
dard should be deployed to ensure proper transformation of data and clippings
retrieved from other sites and/or pages.

Data/content augmentation is the process of transforming and/or enriching
data or content prior to transferring the data or content to a final destination.
Web page data rarely has any data type information associated with it. Most
data or content is simply text. A mashup infrastructure should work to solve
the problem of data mismatches using patterns that define services and pro-
cesses that facilitate data augmentation. Some of the patterns to use include the
message translator pattern, the content-enricher pattern, the content filter pat-
tern, the canonical data model pattern, and others.

Assembling a Canvas of Mashup Components

Artifacts gathered from data augmentation and clipping core activities must be
assembled and orchestrated to give them directed purpose. This can be regarded

From the Library of John Jeffrey Hanson

ptg31978834

CORE ACTIVITIES OF A MASHUP 171

in the same manner as the activity of an artist assembling colors, shapes, and
layers on a canvas to produce a painting.

Data entities need to be assembled to be used in an intelligent manner in the
same way that visual artifacts need to be assembled. In this respect, a virtual
canvas is used as the arena in which data is assembled and orchestrated. Meta-
data is important for a virtual data canvas in that it allows tools and processes
to discover similarities between data entities and, hopefully, semantic relevance
through which aggregate entities might be derived.

UI artifacts are assembled on a literal canvas where visual arrangement is
required. Metadata for visual components is also important for interlinking
components that share similarities in context and functionality.

With an effective layer of metadata instrumentation applied to data and UI
artifacts, the act of assembling components together is greatly simplified. If the
metadata is semantically rich and sufficiently contextual, much of the assembly
work can be automated using programmatic techniques. This can produce a
mashup infrastructure that enables a robust environment for building new com-
ponents, services, and applications using a small amount of manual intervention.

Patterns and Purposes for Notifications and Alerts

Enterprise applications are often required to respond to changes reported by
other systems, devices, and subsystems. Techniques for enabling a mashup infra-
structure to react to these changes include periodic polling of each device or
subsystem to query for changes or transmitting the changes dynamically from
the device or subsystem to the mashup infrastructure as the changes take place.

Periodic polling has been the typical technique used in many HTTP-based
systems since the HTTP protocol does not support a mechanism for dynami-
cally transmitting or “pushing” data. Therefore, ascertaining changes that have
taken place in a device or subsystem typically requires a manual query of the
device or subsystem on a periodic basis. This leads to a number of problems
including bandwidth congestion from unnecessary HTTP traffic and latency of
information discovery. If it is crucial to discover changes as soon as possible,
HTTP requests must be made frequently, which can cause large amounts of
unnecessary bandwidth usage. It is far more efficient to transmit data from
devices or subsystems to a mashup infrastructure as changes take place.

Some applications or protocols are designed around a notification or push
model, such as SNMP (Simple Network Management Protocol), MOM (Message-
Oriented Middleware), SMTP (Simple Mail Transfer Protocol), RSS, and others.

SNMP is designed around a model for issuing events called “traps” or notifi-
cations containing information about the status of networked devices. Status

From the Library of John Jeffrey Hanson

ptg31978834

172 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

information is sent from SNMP agents to SNMP management entities at pre-
defined intervals. Interested listeners, such as monitoring or management appli-
cations, can use this data to inform network managers of faults, performance
statistics, and so on. Patterns used for SNMP notification handling include
adapter, proxy, bridge, mediator, and others.

MOM frameworks provide support for asynchronous message processing
using a publish/subscribe model. In this model, interested listeners can sub-
scribe with message stores known as “topics” to which message publishers send
notification messages. When a topic receives a message, the message is relayed
to all subscribers. This model allows a decoupled message-passing interaction
between message publishers and message subscribers. Patterns used for MOM
message handling include broker, composite application, message bus, pipes
and filters, and others.

SMTP is a protocol that facilitates another form of push-based message com-
munication. Although not typically used for mission-critical event notifications,
SMTP can be an efficient means for distributing message data asynchronously.
Patterns used for SMTP message handling include observer, chain of responsi-
bility, decorator, pipes and filters, and others.

Types of Mashup Patterns

Patterns can be applied to a mashup infrastructure with the same amount of
success that is enjoyed by other types of software development infrastructures.
In fact, with a mashup infrastructure being responsible for hosting many new
applications and services not foreseen at first, it makes even more sense to apply
common patterns to the framework to provide as much structure to the devel-
opment environment as possible.

The following sections describe some types of patterns that can be used
within a mashup infrastructure.

UI Artifact Mashup Pattern

The UI artifact pattern defines the activity of assembling UI artifacts (related
and unrelated) on a page. The artifacts may have no commonalities; they may
just individually fulfill a given purpose that adds to the value or usability of the
page. The UI artifacts are usually just embedded within the page as distinct
objects. Pages resembling portals that are composed of widgetlike components
are typical examples of this.

Figure 5.1 illustrates the relationships of components and modules that
embody a typical UI artifact design pattern in a mashup environment.

From the Library of John Jeffrey Hanson

ptg31978834

TYPES OF MASHUP PATTERNS 173

As shown in Figure 5.1, UI artifacts can be produced from a number of dif-
ferent technologies and markup languages. The artifacts are typically arranged
on a page side-by-side with no common features shared between neighboring
components. The UI object in the diagram can refer to such things as a web
page, a desktop application, or a mobile device display.

Presentation Layer Mashup Pattern

The presentation layer mashup pattern defines a model for producing a visual
mashup page using data and content from remote sources such as web service
APIs, RSS feeds, and so on. Many of the visual components produced in this
model are generated using data that is fed to the page using dynamic techniques
involving JavaScript, DOM manipulation, CSS, and user-agent detection. This
dynamic environment allows multiple components to share data and function-
ality, therefore exposing a more integrated look-and-feel than the UI artifact
pattern.

Figure 5.2 illustrates the relationships of data and content present in a typi-
cal presentation layer design pattern environment.

Figure 5.2 shows multiple sources feeding data and content to the presenta-
tion layer of a mashup. The data and content can be used to dynamically gener-
ate UI artifacts that have many common features and share some of the same
attributes. This model is used in many AJAX-based applications, since AJAX
allows data to be retrieved in the background and used to update individual
components on a page.

Figure 5.1 UI artifact mashup pattern

Dynamic
JavaScript

Widget

HTML
Snippet

Mashup

UI

From the Library of John Jeffrey Hanson

ptg31978834

174 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

Process Layer Mashup Pattern

The process layer pattern defines a model that combines data or content
together before it reaches the visual page. This typically occurs on the server
side of a mashup environment. The advantage of this model is that tools and
programming languages on the server side are typically more mature when it
comes to integrating data. Other issues such as data security can be managed
and controlled easier when handled on the server side.

Figure 5.3 illustrates a typical process layer design pattern and the relation-
ships of modules and services in a framework using the pattern.

Figure 5.2 Presentation layer mashup pattern

Figure 5.3 Process layer mashup pattern

Feed

Web Service

Web
Resource

Mashup

Presentation
Layer

Code Module

Service

Service

Mashup

Process
Layer

Presentation
Layer

From the Library of John Jeffrey Hanson

ptg31978834

TYPES OF MASHUP PATTERNS 175

As Figure 5.3 illustrates, data and content are fed to the process layer from
multiple sources such as services and code modules. The data and content are
integrated in the process layer before being distributed to the presentation layer.
This model is found in many systems exposing service APIs and UI artifacts that
have been produced from the process layer as data and content are combined.

Data Layer Mashup Pattern

The data layer pattern defines a model in which data is integrated using stan-
dard toolsets and technologies such as relational databases, XML-based data
feeds, and service API results. Significant advances have been introduced by
database vendors, service providers, and others in regards to their abilities to
provide tools and features that allow disparate data to be easily integrated.

Figure 5.4 illustrates a typical data layer design pattern showing how compo-
nents and modules feed data to the data layer to be augmented and integrated.

In Figure 5.4 databases, external feeds, and service APIs provide data to the
data layer to be processed. The data layer can then enrich and transform the
data prior to feeding it to the process layer. This enables a model where seman-
tically sparse data can be augmented with semantics that can be easily used by
the process layer to further aggregate data and content.

Alerter Pattern

The alerter pattern describes a model where notifications and alerts are passed to
interested listeners. A framework designed around the alerter pattern can provide

Figure 5.4 Data layer pattern

Database

External
Feed

External Web
Service

Mashup

Data LayerProcess
Layer

Presentation
Layer

From the Library of John Jeffrey Hanson

ptg31978834

176 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

responsive interactions to components and frameworks with which it interacts
due to the ability to provide real-time or near real-time updates and events.
Mashup infrastructures can exploit this responsiveness by providing dynami-
cally updateable datasets and UI artifacts that are used in mashup applications.

In addition to pushing notifications to listeners, an instance of the alerter
that represents a watched resource can be queried or polled at regularly sched-
uled intervals to retrieve status updates.

Instances of the alerter pattern can interact effectively with nonhuman
agents. This allows gathering of data to take place in background processes
where the data can be evaluated and used in an aggregate form to feed statisti-
cal modeling software and other management tools.

Mashups do not need to regularly interact with an end user to add value.
Intelligent agents can be used to alert applications and services of significant
events.

Figure 5.5 illustrates a typical alerter design pattern as applied to event
sources and event sinks.

In Figure 5.5, multiple event sinks are interested listeners to a single event
source. In practice, event sinks might be registered as interested listeners to mul-
tiple event sources. Event sinks may take the form of data components, pro-
cesses, and UI artifacts.

Time Series Pattern

The time series pattern defines a model for tracking time series data. A “time
series” is a chain of related data accumulated across scheduled intervals. Apply-
ing statistical models against the accumulated time series data, future events can
be predicted and acted on. This data can also be used for historical trend analy-

Figure 5.5 Alerter pattern

Event Sink Event SinkEvent Sink

Event
Source

event eventevent

From the Library of John Jeffrey Hanson

ptg31978834

TYPES OF MASHUP PATTERNS 177

sis and applied to the decision-making process for setting future directions. For
example, in his book Mashup Patterns: Designs and Examples for the Modern
Enterprise Michael Ogrinz points out that “studying past conditions can pro-
vide answers to the following questions:

• Which drug will most effectively combat the spread of a particular disease?

• How much gas should be refined for the upcoming holiday weekend?

• When will a particular assembly-line robot need to be replaced?

• What food items sell best under particular weather conditions?”

Ogrinz goes on to state that time series data can be harvested in four distinct
steps: identification, collection, transformation, and scheduling and storage.

Time series data can be retrieved from internal sources such as IT operations
systems and external sources such as publicly available sites including utility
companies, government agencies, and others.

Figure 5.6 illustrates the interactions between components and modules that
embody a typical time series design pattern in a mashup environment.

Figure 5.6 Time series pattern

TS Database

Statistical
Modeling
Process

Mashup

TS Data
Collector

Transformer

Time-
Sensitive

Data Source

Time-
Sensitive

Device

Time-
Sensitive
Service

time series
data

time series
data

time series
data

transformed
data

aggregated
data

prerecorded
data

From the Library of John Jeffrey Hanson

ptg31978834

178 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

As Figure 5.6 illustrates, data is fed to a data collector from multiple time-
sensitive data sources via a transformer module. The transformer module nor-
malizes the data before it reaches the data collector. The data collector then
feeds the data to interested listeners such as a mashup or a statistical modeling
process. The data collector can also store the data for future use.

Super Search Pattern

The super search pattern defines a model for enabling generic search capabili-
ties across a wide range of disparate search technologies and other traversable
resources. An instance of the super search pattern aggregates results retrieved
from search engines, external service providers, databases, and so on and pre-
sents the aggregated results to search consumers. As long as a resource or ser-
vice provides the means to crawl, navigate, or traverse result sets relating to the
resource, a super search instance can apply search queries against the resource.

Figure 5.7 illustrates the relationships of components and modules that
embody a typical super search design pattern in a mashup environment.

As Figure 5.7 illustrates, search data is retrieved from disparate sources to a
super search instance using multiple retrieval mechanisms. The super search
instance normalizes and aggregates the results before it is fed to a search con-
sumer, such as a mashup.

Figure 5.7 Super search pattern

search
data

search
data

search
data

search
data

search
data

aggregated
search data

Super
Search
Service

Search
Mashup

Search
Engine

Database
Result Set

Crawlable
External Site

File System
Grep

Document
Content

Traversal

From the Library of John Jeffrey Hanson

ptg31978834

TYPES OF MASHUP PATTERNS 179

Feed Factory Pattern

The feed factory pattern defines a model for traversing sites and pages of interest
to collect information that can be used within a local module, service, or page.

RSS and Atom feeds are provided by many sites and authors. The content
from these feeds is typically retrieved by feed readers or aggregators and pre-
sented as a collection of snippets describing the content of each feed item. The
feed factory used within a mashup environment expands on traditional feed-
aggregation methods by enabling a model where data can be fed from virtually
any data source using any data format. In Mashup Patterns: Designs and
Examples for the Modern Enterprise, Michael Ogrinz points out that “it is the-
oretically possible to RSS enable web sites, binary files (e.g., spreadsheets),
databases, and more.”

Sources of information participating with a feed factory instance can be
dynamic in nature, such as in the case where notifications are pushed to the
feed factory instance by alerter pattern instances or search results returned from
super search pattern instances.

Figure 5.8 illustrates a typical feed factory design pattern in a mashup environ-
ment and how the components interact with each other in the use of the pattern.

Figure 5.8 Feed factory pattern

feed
data

feed
data

feed
data

feed
data

feed
data

aggregated
feed data

Feed Factory

Feed
Consumer

RSS Feed Sales Report
Relational
Database

Time-Series
Alerter

Super-
Search
Module

From the Library of John Jeffrey Hanson

ptg31978834

180 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

As Figure 5.8 illustrates, data is fed from disparate sources to a feed factory.
The feed factory module normalizes and aggregates the data before it is fed to a
consumer module.

Workflow Pattern

The workflow pattern defines a model for organizing interactions between
humans and business processes and for tracking the status of business processes
and resources. Workflows define organized tasks that are repeated on a regular
basis. Since so many business processes rely on software to perform associated
tasks, software is a vital part of workflows.

Software-based workflow frameworks are typically concerned with business
processes and the systems that participate in these processes. The systems par-
ticipating in a given workflow direct the flow of information as it moves
through each business process. Workflow definitions can be modified by alter-
ing (editing, adding, and deleting) the individual activities contained within
each workflow definition.

Figure 5.9 illustrates a typical workflow design pattern and its participating
processes as used in a mashup environment.

Figure 5.9 Workflow pattern

Process Process

decision
transition transition

Process

Mashup

Process

From the Library of John Jeffrey Hanson

ptg31978834

TYPES OF MASHUP PATTERNS 181

As Figure 5.9 illustrates, information and control transition from process to
process based on the result of decisions made along the way. A formal software-
based workflow typically embodies this flow in a document defining business
rules and transitions.

Pipes and Filters Pattern

The pipes and filters pattern defines a chain of interconnected modules through
which data flows. The data is enriched and augmented as it travels from one
module to the next towards its final destination. The result of one module’s
enrichment and augmentation becomes the input for the next module in the chain.

Figure 5.10 illustrates a chain of modules that might be found in a typical
pipes-and-filters design pattern in a mashup environment.

As Figure 5.10 illustrates, data transitions along a chain of modules where
enrichment and augmentation of the data take place. The result from the final
module in the chain is passed to the intended destination where it is used. In
this case, a mashup is the final destination. The mashup could also act as a
module in a larger chain performing even more enrichment and augmentation
in a dynamic way.

Data Federation Pattern

The data federation pattern defines a mechanism for integrating and abstract-
ing structured and unstructured data from multiple, disparate data sources.
Instances of the data federation pattern seek to apply semantic metadata views

Figure 5.10 Pipes and filters pattern

Authenticate Transform Route

Mashup

Data Source

Encrypt/
Decrypt

datadata

datadata

pipe pipe pipe

From the Library of John Jeffrey Hanson

ptg31978834

182 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

to data sources and data relationships to transform and normalize data from
various sources.

Data federation instances are traditionally embodied by federation servers
that apply relational concepts to structured and unstructured data sources. In
this scenario data consumers apply standard relational queries to the federation
server, which performs the necessary conversions to apply the semantics of the
queries to nonrelational data sources.

Figure 5.11 illustrates the relationships of components and modules that
embody a typical data federation design pattern in a mashup environment.

As Figure 5.11 illustrates, disparate data sources are abstracted from the
data layer by the data federation server. Processes and other data consumers
can send queries to the data layer, which in turn, passes the queries on to the
data federation server. The data federation server does the necessary conver-
sions to apply the queries to each individual data source that is abstracted by
the server.

Software as a Service (SaaS) Pattern

The software as a service (SaaS) pattern defines a model for delivering function-
ality to consumers across a network connection using a subscription model. An
instance of the SaaS pattern delivers functionality to multiple consumers using
standard web-based technologies such as HTML, CSS, and JavaScript.

SaaS reduces costs in a number of ways since SaaS typically operates in a
browser or purely programmatic environment, little or no software is actually
installed on an end user’s system. Specifically, costs for testing across multiple

Figure 5.11 Data federation pattern

Database

External
Feed

External Web
Service

Process
Layer

Data Layer Data Federation
Server

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 183

hardware configurations and operating systems are all but eliminated since typ-
ically the only operating environment concerned is either a web browser or an
external tool that consumes the functionality as a web service API result.

Figure 5.12 illustrates the components and modules that embody a typical
SaaS design pattern in a mashup environment and the relationships between
each component and module.

As Figure 5.12 illustrates, services exposing functionality for various services
and service providers are registered with a service subscription framework. The
service subscription framework then acts as the main point of contact between
service consumers and service providers. The service subscription framework
manages subscriptions for the service consumer.

Applying Patterns to an Enterprise Mashup
Infrastructure

As defined in the previous sections, the time series pattern and the workflow
pattern are used extensively in enterprise systems and frameworks. Implementa-
tions for each pattern can provide for an effective mashup infrastructure.

This section applies the concepts of the time series pattern and the workflow
pattern to the construction of a mashup.

Figure 5.12 Software as a service pattern

Service

Service

Service
Consumer

External
Service
Provider

Service
Subscription
Framework

Mashup
Server

Internal Data
Store

Internal
Server

Service

From the Library of John Jeffrey Hanson

ptg31978834

184 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

Time Series Framework

The software components of a simple time series framework can be minimal.
To provide functionality for the basic concepts of a time series pattern the
framework should supply components to support time periods, intervals of val-
ues and time periods, listeners, and a time series itself.

Figure 5.13 illustrates the primary classes participating in a simple time
series framework and the relationships of each.

As Figure 5.13 illustrates, the main point of contact in a simple time series
framework is the TimeSeries class. The TimeSeries class interacts with listener
classes, time period classes, interval classes, and so on to provide a standard
interface through which time series data providers can operate.

The sequence of invocations from a time series consumer and the time series
framework is illustrated in Figure 5.14.

Figure 5.13 Class diagram for the time series framework

Figure 5.14 Sequences for a simple time series interaction

+ TimePeriod

+ methods
fields

+ TmeSeriesChangedEvent extends EventObject

+ methods
+ constructors
+ fields

+ TimeSeriesChangeListener

+ methods

extends EventListener
fields

+ TimeSeries

+ methods
+ constructors
+ fields

+ Interval

+ methods
fields

TimeSeriesChangedEvent TimeSeriesChangeListenerTimeSeriesProvider

1.1:addInterval

1.1.1:«create»

1.1.2:intervalAdded

TimeSeries

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 185

As shown in Figure 5.14, a time series provider interacts directly with the
TimeSeries class. The time series provider adds interval values and time periods
to the TimeSeries class. The TimeSeries class dispatches notifications to interested
listeners as new intervals are added.

Listing 5.1 provides the details for a simple TimeSeries class in which listeners
can register and time series providers can interact.

Listing 5.1 TimeSeries Class
public class TimeSeries
{
 private LinkedHashMap<TimePeriod, Double> intervals =
 new LinkedHashMap<TimePeriod, Double>();
 private String name = "";
 private ArrayList<TimeSeriesChangeListener>
 timeSeriesChangeListeners =
 new ArrayList<TimeSeriesChangeListener>();

 public TimeSeries(String name)
 {
 this.name = name;
 }

 public void addInterval(final TimePeriod period,
 final double value)
 {
 intervals.put(period, value);

 Interval interval = new Interval()
 {
 public TimePeriod getPeriod()
 {
 return period;
 }

 public double getValue()
 {
 return value;
 }
 };

 TimeSeriesChangedEvent event =
 new TimeSeriesChangedEvent(this, interval);

 Iterator<TimeSeriesChangeListener> iter =
 timeSeriesChangeListeners.iterator();
 while (iter.hasNext())
 {

From the Library of John Jeffrey Hanson

ptg31978834

186 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

 TimeSeriesChangeListener timeSeriesChangeListener =
 iter.next();
 timeSeriesChangeListener.intervalAdded(event);
 }
 }

 public int getIntervalCount()
 {
 return intervals.size();
 }

 public String getName()
 {
 return name;
 }

 public TimePeriod getKey(int i)
 {
 return (TimePeriod)intervals.keySet().toArray()[i];
 }

 public Double getValue(int i)
 {
 return intervals.get(i);
 }

 public void
 addTimeSeriesChangeListener(TimeSeriesChangeListener
 timeSeriesChangeListener)
 {
 timeSeriesChangeListeners.add(timeSeriesChangeListener);
 }

 public void
 removeTimeSeriesChangeListener(TimeSeriesChangeListener
 timeSeriesChangeListener)
 {
 timeSeriesChangeListeners.remove(timeSeriesChangeListener);
 }
}

As Listing 5.1 points out, interested listeners register and unregister with the
TimeSeries class using the respective methods, addTimeSeriesChangeListener and
removeTimeSeriesChangeListener. Time series data providers use the addInterval

method to add time series data values and time periods. Intervals are stored in a
data structure ensuring predictable iterations on retrieval. Ancillary methods
allowing retrieval of specific intervals and the total number of intervals stored
are provided.

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 187

A specific time period stored as part of an interval is defined by the TimePeriod
interface. A simple incarnation of the interface, as shown in Listing 5.2, pro-
vides a Timestamp property. The interface should be enhanced to provide a more
robust definition of time periods, specifically, with ranges of time periods in
mind.

Listing 5.2 TimePeriod Interface
public interface TimePeriod
{
 public Date getTimestamp();
}

Implementations of the TimePeriod interface must provide support for the
getTimestamp method. The timestamp returned is a simple Java Date type.
Enhancements to the interface might provide a more robust definition of a
timestamp to provide information about the time period such as timestamp
authorities, digital signing information, and other information.

A given interval defining a time period and a value is defined by the Interval
interface. The interface shown in Listing 5.3 provides a period property and a
value property.

Listing 5.3 Interval Interface
public interface Interval
{
 public TimePeriod getPeriod();

 public double getValue();
}

Implementations of the Interval interface must provide support for the getPe-
riod method and the getValue method. Note the value returned from getValue is a
primitive Java double type.

Interested listeners to the TimeSeries class must register themselves as imple-
mentations of the TimeSeriesChangeListener interface. This interface provides sup-
port for passing notifications of intervals being added to an instance of the
TimeSeries class.

Listing 5.4 provides a detailed illustration of the TimeSeriesChangeListener interface.

Listing 5.4 TimeSeriesChangeListener Interface
public interface Interval
public interface TimeSeriesChangeListener
 extends EventListener
{
 void intervalAdded(TimeSeriesChangedEvent event);
}

From the Library of John Jeffrey Hanson

ptg31978834

188 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

Implementations of the TimeSeriesChangeListener interface must provide sup-
port for the intervalAdded method. As a new interval is added to the TimeSeries
class, listeners are notified via the intervalAdded method. A TimeSeriesChangedEvent
object containing details about the interval is passed to the intervalAdded method.
Listeners can then access the information in the TimeSeriesChangedEvent to find out
about the specific interval.

The TimeSeriesChangedEvent class defines an object that contains information
about a given time series event; specifically, information about intervals.
Instances of the interface are passed to interested listeners of the TimeSeries class
as new intervals are added.

Listing 5.5 shows details of the TimeSeriesChangedEvent class.

Listing 5.5 TimeSeriesChangedEvent Interface
public class TimeSeriesChangedEvent
 extends EventObject
{
 private Interval interval = null;

 public TimeSeriesChangedEvent(Object source,
 Interval interval)
 {
 super(source);

 this.interval = interval;
 }

 public Interval getInterval()
 {
 return interval;
 }
}

As shown in Listing 5.5, instances of the TimeSeriesChangedEvent class provide
details about a time series event. This information consists of the source of the
event and a specific interval containing a time period and a value.

Testing the time series framework is a process of instantiating the TimeSeries
class, registering a listener with the TimeSeries instance, and then passing inter-
vals to the TimeSeries instance on a periodic basis.

Listing 5.6 demonstrates a simple class that tests the basic functionality of
the TimeSeries framework.

Listing 5.6 Interaction with a Simple Time Series
 private void testTimeSeries()
 {
 final TimeSeries timeSeries =
 new TimeSeries("Test Series");

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 189

 timeSeries.addTimeSeriesChangeListener(new
 TimeSeriesChangeListener()
 {
 public void intervalAdded(TimeSeriesChangedEvent event)
 {
 System.out.println("Interval added to "
 + ((TimeSeries)event.getSource()).getName() + ": "
 + event.getInterval().getPeriod().getTimestamp()
 + " = " + event.getInterval().getValue());
 }
 });

 new Thread(new Runnable()
 {
 public void run()
 {
 long startTime = System.currentTimeMillis();
 long currTime = startTime;
 while ((currTime - startTime) < 20000)
 {
 final double factor = 0.90 + 0.2 * Math.random();
 lastValue = lastValue * factor;
 final Date timestamp = new Date();
 final TimePeriod timePeriod = new TimePeriod()
 {
 public Date getTimestamp()
 {
 return timestamp;
 }
 };

 timeSeries.addInterval(timePeriod, lastValue);

 try
 {
 Thread.sleep(500);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }

 currTime = System.currentTimeMillis();
 }
 }
 }).start();
 }

From the Library of John Jeffrey Hanson

ptg31978834

190 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

Listing 5.6 demonstrates a simple example of interplay with the time series
framework. In the example, an instance of the TimeSeries class is instantiated,
with which an instance of the TimeSeriesChangeListener interface is registered. A
new thread is then started that adds random value intervals to the TimeSeries
class instance roughly every one-half second. Each time an interval is added, the
registered TimeSeriesChangeListener instance is notified via its addInterval method.

TimeSeries notifications can be transmitted to interested listeners in a web
environment using technologies such as asynchronous AJAX, Comet, HTTP
streaming, and so on.

A basic implementation of a workflow framework is discussed and illus-
trated in the following section.

Workflow Framework

A basic workflow framework should provide support for defining a set of rules
by which the flow of work should follow. As part of the rule set, transitions
should be defined to direct the flow of control as specific conditions are met. As
the workflow traverses through a set of rules, tasks are executed and the results
evaluated to determine subsequent steps. The workflow framework supports
the definition and execution of workflows.

Figure 5.15 illustrates the relationships and definitions of the primary classes
participating in a rudimentary workflow framework.

As Figure 5.15 illustrates, relationships between classes and interfaces in a sim-
ple workflow framework revolve around tasks, a workflow, and a workflow

Figure 5.15 Class diagram for the workflow framework

+ WorkflowContext

+ methods

extends Map
fields

+ SimpleWorkflow

+ methods
constructors

+ fields

implements Workflow

+ WorkflowFactory

+ methods
constructors
fields

+ SimpleContext

+ methods
+ constructors
+ fields

implements WorkflowContext

+ Task

+ methods
fields

+ Workflow

+ methods
fields

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 191

context. The SimpleWorkflow class implements the Workflow interface and directs the
flow of control through a given set of tasks operating within a workflow context.

The sequence of invocations as flow-of-control traverses through the work-
flow framework is illustrated in Figure 5.16.

As shown in Figure 5.16, a workflow client retrieves an instance of the Work-
flow interface from the WorkflowFactory class. An instance of the WorkflowContext is
then created and passed to the Workflow instance, where the WorkflowContext

instance is passed along the chain of tasks executed by the workflow.
Listing 5.7 provides the details for a WorkflowFactory class in which instances

of Workflow implementations are created and returned.

Listing 5.7 WorkflowFactory Class
public class WorkflowFactory
{
 public static Workflow getInstance(String workflowConfigName)
 throws WorkflowFactoryException
 {
 try
 {
 String clsName =
 System.getProperty("com.jeffhanson.workflow");
 if (null == clsName || clsName.length() <= 0)
 {

Figure 5.16 Sequences for a simple workflow interaction

1.1:getInstance

1.1.1:initialize

1.2:«create»

1.3:execute

1.3.1:execute

1.3.2:addError

WorkflowClient WorkflowFactory Workflow SimpleContext SimpleWorkflow Task WorkflowContext

From the Library of John Jeffrey Hanson

ptg31978834

192 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

 clsName = SimpleWorkflow.class.getName();
 }

 Class cls = Class.forName(clsName);
 if (Workflow.class.isAssignableFrom(cls))
 {
 Object obj = cls.newInstance();
 Workflow instance = (Workflow)obj;
 instance.initialize(workflowConfigName);
 return instance;
 }
 else
 {
 throw new WorkflowFactoryException(
 "Workflow object not derived from Workflow class");
 }
 }
 catch (Exception e)
 {
 throw new WorkflowFactoryException(e);
 }
 }
}

As detailed in Listing 5.7, the WorkflowFactory class looks at a system property
to determine the name of the class implementing the Workflow interface that is to be
instantiated and returned. If the system property is not found, the SimpleWorkflow
class is instantiated and returned. Before the Workflow implementation instance is
returned, its initialize method is called with the name of a configuration file
containing the set of rules for the workflow.

A specific workflow is defined by an implementation of the Workflow interface.
As shown in Listing 5.8, the Workflow interface is comprised of methods allowing
management of tasks, initializing with a workflow configuration, and an exe-
cute method that instigates the workflow process.

Listing 5.8 Workflow Interface
public interface Workflow
{
 void addTask(String name,
 Task task,
 String onSuccessTransition,
 String onErrorTransition);

 Task getTask(String name);

 Iterator getTaskNames();

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 193

 void initialize(String workflowConfigName)
 throws WorkflowInitializationException;

 void execute(WorkflowContext workflowContext)
 throws WorkflowExecutionException;
}

Implementations of the Workflow interface are required to provide bodies for
the addTask, getTask, getTaskNames, initialize, and execute methods. Tasks that are
added to a Workflow instance are added to the workflow defined by the configu-
ration file passed to the initialize method. In the initialize method, the work-
flow configuration is loaded and the set of rules defined within are parsed and
added to the workflow. Tasks and transitions are evaluated and a flow of con-
trol is created according to the set of rules. The execute method embodies the
functionality for actually executing the flow of control, including tasks and
transitions defined by the set of rules in the workflow configuration.

Listing 5.9 shows a simple implementation of the Workflow interface. This
class stores tasks and transitions in a data structure with predictable iteration.
The tasks and transitions are evaluated when the execute method is called. Tran-
sitions consist of simple on-error or on-success decisions.

Listing 5.9 SimpleWorkflow Class
public class SimpleWorkflow
 implements Workflow
{
 private static class TaskData
 {
 Task task = null;
 String onSuccessTransition = null;
 String onErrorTransition = null;

 private TaskData(Task task,
 String onSuccessTransition,
 String onErrorTransition)
 {
 this.task = task;
 this.onSuccessTransition = onSuccessTransition;
 this.onErrorTransition = onErrorTransition;
 }
 }

 private LinkedHashMap<String, TaskData> tasks =
 new LinkedHashMap<String, TaskData>();

 public void initialize(String workflowConfigName)
 throws WorkflowInitializationException

From the Library of John Jeffrey Hanson

ptg31978834

194 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

 {
 ClassLoader cl =
 Thread.currentThread().getContextClassLoader();
 if (cl == null)
 {
 cl = SimpleWorkflow.class.getClassLoader();
 }

 InputStream inStream =
 cl.getResourceAsStream(workflowConfigName);
 if (null == inStream)
 {
 throw new WorkflowInitializationException(
 "Workflow config [" + workflowConfigName
 + "] not found");
 }

 try
 {
 Document doc =
 DocumentBuilderFactory.newInstance().
 newDocumentBuilder().parse(inStream);
 NodeList taskNodes =
 doc.getElementsByTagName("task");
 if (taskNodes.getLength() <= 0)
 {
 throw new WorkflowInitializationException(
 "No task nodes found in workflow file.");
 }

 for (int i = 0; i < taskNodes.getLength(); i++)
 {
 Node taskNode = taskNodes.item(i);
 NamedNodeMap attributes = taskNode.getAttributes();
 String taskName = XMLUtils.loadAttrValue(attributes,
 "name");
 if (null != taskName && taskName.length() > 0)
 {
 String taskClsName =
 XMLUtils.loadAttrValue(attributes,
 "class");
 if (null != taskClsName && taskClsName.length() > 0)
 {
 Class cls = Class.forName(taskClsName);
 if (Task.class.isAssignableFrom(cls) == false)
 {
 throw new WorkflowInitializationException(
 "Class defined in workflow config "

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 195

 + "file for task [" + taskName
 + "] is an invalid type.");
 }

 String onSuccessTransition = null;
 String onErrorTransition = null;

 Node onSuccessNode =
 XMLUtils.findFirstNamedChild(taskNode,
 "onsuccess");
 if (null != onSuccessNode)
 {
 NamedNodeMap onSuccessNodeAttrs =
 onSuccessNode.getAttributes();
 onSuccessTransition =
 XMLUtils.loadAttrValue(onSuccessNodeAttrs,
 "transition");
 }

 Node onErrorNode =
 XMLUtils.findFirstNamedChild(taskNode,
 "onerror");
 if (null != onErrorNode)
 {
 NamedNodeMap onErrorNodeAttrs =
 onErrorNode.getAttributes();
 onErrorTransition =
 XMLUtils.loadAttrValue(onErrorNodeAttrs,
 "transition");
 }

 Task taskObj = (Task)cls.newInstance();
 taskObj.setName(taskName);
 taskObj.initialize();
 addTask(taskName,
 taskObj,
 onSuccessTransition,
 onErrorTransition);
 }
 }
 }
 }
 catch (Exception e)
 {
 throw new WorkflowInitializationException(e);
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

196 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

 public void execute(WorkflowContext workflowContext)
 throws WorkflowExecutionException
 {
 Iterator<TaskData> iter = tasks.values().iterator();
 if (iter.hasNext())
 {
 TaskData taskData = iter.next();
 while (null != taskData)
 {
 Task task = taskData.task;
 try
 {
 task.execute(workflowContext);
 taskData = tasks.get(taskData.onSuccessTransition);
 }
 catch (Exception e)
 {
 workflowContext.addError(task.getName()
 + "-ERROR", e);
 taskData = tasks.get(taskData.onErrorTransition);
 }
 }
 }
 }

 public void addTask(String name, Task task,
 String onSuccessTransition,
 String onErrorTransition)
 {
 TaskData taskData = new TaskData(task,
 onSuccessTransition,
 onErrorTransition);
 tasks.put(name, taskData);
 }

 public Task getTask(String name)
 {
 TaskData taskData = tasks.get(name);
 if (null == taskData)
 {
 return null;
 }
 return taskData.task;
 }

 public Iterator getTaskNames()
 {
 return tasks.keySet().iterator();
 }
}

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 197

As shown in Listing 5.9, an XML-based workflow configuration is used to
define the set of rules for the workflow. The XML configuration document con-
tains nodes defining task classes along with the names of transitions in which to
target for successful completion of each task or on unsuccessful completion of
each task.

Each task executed in a given workflow is embodied within an implementa-
tion of the Task interface, as illustrated in Listing 5.10.

Listing 5.10 Task Interface
public interface Task
{
 void execute(WorkflowContext workflowContext)
 throws Exception;

 void setName(String name);

 String getName();

 void initialize();
}

As shown in Listing 5.10, the Task interface defines a name property, an initialize
method, and an execute method. The execute method is called by a workflow
instance during execution of the workflow. Work for each task occurs in the
execute method of the Task interface implementation.

A simple implementation of the Task interface is shown in Listing 5.11. The
execute method simply prints a message to System.out and adds a key/value pair
to the workflow context passed to the method.

Listing 5.11 SimpleTask Class
public class SimpleTask
 implements Task
{
 private String name = "";

 public void execute(WorkflowContext workflowContext)
 throws Exception
 {
 System.out.println("SimpleTask");
 workflowContext.put("SimpleTask results", "success");
 }

 public void setName(String name)
 {
 this.name = name;
 }

From the Library of John Jeffrey Hanson

ptg31978834

198 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

 public String getName()
 {
 return name;
 }

 public void initialize()
 {
 }
}

Note in Listing 5.11, how name/value pairs can be added to the workflow
context. This allows each task to leave tracks, so to speak, inside the workflow
context. This trail of tracks can then be evaluated on termination of the work-
flow for auditing and management tasks.

A workflow context is defined by the WorkflowContext interface. The purpose
of this interface is to define an object that can be passed throughout the execu-
tion of a workflow to each task in the workflow and provide a point of refer-
ence to the tasks. The context can also be used to store information about the
execution of the chain of tasks. As shown in Listing 5.12, a workflow context
provides methods to facilitate storage and retrieval of errors that occur as a
workflow is executed.

Listing 5.12 WorkflowContext Interface
public interface WorkflowContext
 extends Map
{
 String getID();

 void addError(String errorName, Object errorObj);

 Iterator getErrorNames();

 Object getError(String errorName);
}

Listing 5.13 shows a simple implementation of the WorkflowContext interface.
The java.util.Properties class is used as the data structure to store name/value
pairs and errors as a hosting workflow passed an instance of the class through-
out a workflow.

Listing 5.13 SimpleContext Class
public class SimpleContext
 implements WorkflowContext
{
 private String id = "";
 private Properties properties = new Properties();
 private Properties errors = new Properties();

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 199

 public SimpleContext(String id)
 {
 this.id = id;
 }

 public String getID()
 {
 return id;
 }

 public void addError(String errorName, Object errorObj)
 {
 errors.put(errorName, errorObj);
 }

 public Iterator getErrorNames()
 {
 return errors.keySet().iterator();
 }

 public Object getError(String errorName)
 {
 return errors.get(errorName);
 }

 public int size()
 {
 return properties.size();
 }

 public boolean isEmpty()
 {
 return properties.isEmpty();
 }

 public boolean containsKey(Object key)
 {
 return properties.containsKey(key);
 }

 public boolean containsValue(Object value)
 {
 return properties.containsValue(value);
 }

 public Object get(Object key)
 {
 return properties.get(key);
 }

From the Library of John Jeffrey Hanson

ptg31978834

200 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

 public Object put(Object key, Object value)
 {
 return properties.put(key, value);
 }

 public Object remove(Object key)
 {
 return properties.remove(key);
 }

 public void putAll(Map t)
 {
 properties.putAll(t);
 }

 public void clear()
 {
 properties.clear();
 }

 public Set keySet()
 {
 return properties.keySet();
 }

 public Collection values()
 {
 return properties.values();
 }

 public Set entrySet()
 {
 return properties.entrySet();
 }
}

In Listing 5.13, the methods defined by the java.util.Map interface must be
embodied. The body for these methods is implemented by simply delegating
each call to an associated java.util.Properties instance, which implements the
java.util.Map.

Listing 5.14 defines an XML-based workflow configuration file that defines
tasks as child elements of a parent workflow element. Each task element has a
name and class attribute and child elements defining the transitions to make in
the event of a successful execution or in the event of an error.

Listing 5.14 A Sample Workflow
<workflow name="SampleFlow">
 <task name="Step1"

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING PATTERNS TO AN ENTERPRISE MASHUP INFRASTRUCTURE 201

 class="com.jeffhanson.workflow.Step1">
 <onsuccess transition="Step2" />
 <onerror transition="Abort" />
 </task>

 <task name="Step2"
 class="com.jeffhanson.workflow.Step2">
 <onsuccess transition="Step3" />
 <onerror transition="Abort" />
 </task>

 <task name="Step3"
 class="com.jeffhanson.workflow.Step3">
 <onsuccess transition="End" />
 <onerror transition="Abort" />
 </task>

 <task name="End"
 class="com.jeffhanson.workflow.End"/>

 <task name="Abort"
 class="com.jeffhanson.workflow.Abort"/>
</workflow>

Note in Listing 5.14 that terminating tasks, such as End and Abort do not
require transition elements.

As demonstrated in Listing 5.15, testing the workflow framework is simply a
matter of retrieving a workflow instance from the workflow factory, creating a
context to pass to the workflow instance, and calling the execute method on the
workflow instance.

Listing 5.15 Testing the Workflow
public class TestWorkflow
{
 public static void main(String[] args)
 throws Exception
 {
 Workflow workflow =
 WorkflowFactory.getInstance("test-flow.xml");
 SimpleContext workflowContext =
 new SimpleContext("TEST_CONTEXT");
 workflow.execute(workflowContext);
 }
}

Note in the call to WorkflowFactory.getInstance in Listing 5.15 how the name of
the workflow configuration file is passed. In a production environment the

From the Library of John Jeffrey Hanson

ptg31978834

202 CHAPTER 5 ENTERPRISE MASHUP PATTERNS

location of the configuration file should be defined by a more flexible means
such as a URL.

The time series pattern and the workflow pattern provide useful functional-
ity to enterprise systems. In a mashup environment, these and other patterns
discussed in this chapter can be exploited further to provide dynamic compo-
nents and UI artifacts that can be used by mashup creators to build powerful
applications, management consoles, dashboards, and other useful utilities.

Summary

Software design patterns are tested and proven blueprints that provide solu-
tions for common design and implementation issues that occur in many enter-
prise application scenarios. Using patterns to address design and development
issues allows issues to be addressed with common solutions that have been
tested and proven over time.

Traditional enterprise software design and implementation have many of the
same issues as mashup design and implementation. As such, many of the same
design patterns that prove useful to traditional software engineering and design
work just as well with mashup engineering and design.

This chapter discussed some of the patterns that can be applied to a mashup
development environment to provide common solutions to typical mashup
problems. Also discussed were example implementations for some of the pat-
terns presented.

The next chapter discusses fundamental security issues that must be addressed
when designing and implementing mashup components, processes, and artifacts.

From the Library of John Jeffrey Hanson

ptg31978834

203

Chapter 6

Applying Proper Techniques
to Secure a Mashup

A mashup development model is very open by definition. This openness intro-
duces many new security risks; therefore, security must be a primary concern
when developing a mashup infrastructure.

Traditional mechanisms such as firewalls and DMZs are not sufficient for
the granularity of access that mashups require for UI artifacts and data. The
mashup infrastructure itself must be prepared to deal with issues such as cross-
site request forgery (CSRF), AJAX security weaknesses, cross-site scripting, and
secure sign-on across multiple domains.

This chapter discusses fundamental security issues that must be addressed
when designing and implementing mashup components, processes, and arti-
facts. Solutions for these issues are discussed, and sample code is presented at
the end of the chapter.

An Overview of Web Application Security

Early development efforts for the web were directed towards presenting static
HTML pages to a browser client. This simplified model limited the types of
interactions afforded to a user. However, this model also presented a number of
possible security vulnerabilities. It wasn’t long before developers and businesses
realized that a more dynamic model of interaction was possible and desired by
users of web sites.

A dynamic interaction with web site users started with the introduction of
server-side scripting languages that could create custom pages based on input
from a given user and/or input resulting from changes in business data. Now, users
could interface with a web site in an interactive manner. This interactive means
of interchange between client and server garnered an exponentially significant

From the Library of John Jeffrey Hanson

ptg31978834

204 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

amount of momentum in a very short time. This momentum overwhelmed the
technologies available at the time and led ingenious developers to create
dynamic sites using programmatic side-steps, hacks, and proprietary trickery
with languages such as Perl, C, C++, and others. This chaotic development
environment created a breeding ground for security vulnerabilities and holes.
Some of the most notorious vulnerabilities included buffer overflows, denial of
service, and SQL injections.

Standards committees and programming language vendors scrambled to
reign in the chaotic development activity surrounding dynamic site develop-
ment that had surfaced in an attempt to create an environment conducive for
executing secured electronic commerce (e-commerce). Out of this activity, sand-
boxing, managed programming spaces, digital signing, encryption, and other
solutions emerged. This has produced a space where, today, e-commerce takes
place with great regularity with a high-degree of confidence in the security of
transactions. However, the era of mashups has emerged and is creating another
round of side-steps and hacks that are leading to more security problems.

The Need for Security in a Mashup

The fact that a mashup is a page or application built typically using data com-
bined from more than one site, illustrates the manner in which security vulnera-
bilities can multiply quickly. As new invocations are added to access resources
or to call service APIs, new security vulnerabilities become possible. In addition,
external mashups can embed your components and UI artifacts, thereby com-
bining your functionality and data with components and UI artifacts of
unknown origin. These wide open integration possibilities make it imperative
to ensure that your data and functionality are not open to hacker attempts and
other forms of intrusion.

The intrinsic openness of a mashup environment and the inability to predict
exactly how components of a mashup infrastructure will be used in the future
imply the need to address security at every aspect of the development lifecycle.
Therefore, security must be a primary part of a development team’s code review
and testing processes.

A mashup environment most likely uses components and UI artifacts devel-
oped externally. This means that testing external components must be included
in a development team’s testing process right alongside an organization’s own
components. External components should be tested individually and in aggre-
gate with other components of a given mashup.

From the Library of John Jeffrey Hanson

ptg31978834

ENTERPRISE MASHUP SECURITY GUIDELINES 205

Enterprise Mashup Security Guidelines

One of the most important steps for any organization is to institute best prac-
tices and mashup security policies based on standards established by industry,
government, and compliance groups. The following are some guidelines for
instituting a security policy:

• Be determined to create a thorough security policy—Once you have com-
mitted your organization to establishing a thorough security policy, meet-
ing fundamental security needs will fall into place. Security must be a first-
class citizen if you hope to be successful in securing your entire mashup
infrastructure. Your security policy should outline which risks are accept-
able and which risks are absolutely unacceptable.

• Establish a proper authentication and authorization plan—Manage user
credentials effectively using industry standards and trusted identity man-
agement systems. Secure processes and services with role-based authoriza-
tions. Secure resources using access control lists (ACLs) based on security
contexts.

• Allow for flexibility—Create modular authentication and authorization
frameworks to support multiple security providers and specifications.
Allow mashup component consumers to choose the desired privileges for a
given component or resource. Guard components and resources using pre-
established trust relationships.

• Employ message-level and transport-level security—To protect data and
messages during transfer, digital signatures should be employed to ensure
message integrity. Data and messages should also be encrypted to ensure
data privacy. Transport-level security protects data and messages from one
point to another, but does not secure the message payload or data itself.
Message-level security protects the contents of a message by signing and
encrypting all or part of the payload, thereby ensuring privacy of sensitive
information until the message or data reaches its intended destination.

• Support industry security standards—Commit your organization to support
industry security standards set by organizations such as W3C (http://www
.w3.org), OASIS (http://www.oasis-open.org), Web Service Interoperability
group (http://www.ws-i.org), Liberty Alliance project (http://projectliberty.org),
OpenAjax Alliance (http://www.openajax.org), Trusted Computing Group
(http://www.trustedcomputinggroup.org), and the Open Web Application
Security Project (http://www.owasp.org).

From the Library of John Jeffrey Hanson

http://www.w3.org
http://www.w3.org
http://www.oasis-open.org
http://www.ws-i.org
http://projectliberty.org
http://www.openajax.org
http://www.trustedcomputinggroup.org
http://www.owasp.org

ptg31978834

206 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

Many standards and specifications are currently being promoted as solutions
for securing web services transmitting SOAP and XML-based payloads. SOAP
is an XML-based data format and protocol that was designed as a mechanism
for exchanging messages across a network within a payload known as an
“envelope.” Like XML, SOAP is platform and language independent and
extensible. SOAP is a specific incarnation of XML that is supported and some-
times mandated for many formal enterprise data-format standards.

One of the more prominent of these solutions is the WS-Security specifica-
tion. WS-Security discusses, among other things, a standard set of extensions to
SOAP that should be used to secure message content and confidentiality. This
specification lies at the foundation for many other standards and specifications
aimed at building secure web services.

Figure 6.1 illustrates the correlations between WS-Security and some of the
most widely mentioned specifications and standards participating in the current
stack of security standards for web services, XML, and SOAP.

Figure 6.1 illustrates an extensive stack of standards and specifications that
are currently being promoted as solutions for securing web services transmit-
ting SOAP and XML-based payloads. This stack is not complete by any means
but does show most of the prominent players in this arena. These standards and
specifications are briefly defined as follows:

• WS-Security (http://en.wikipedia.org/wiki/WS-Security)—Specifies exten-
sions to SOAP messaging to ensure message content integrity and message

Figure 6.1 Current stack of security standards for web services, XML, and SOAP

SOAP Payload
XML

Digital
Signature

XML
Encryption

XACML SAML XKMS

WS-Security

WS-Policy WS-Trust

WS-SecurityPolicy WS-SecureConversation

WS-Federation

From the Library of John Jeffrey Hanson

http://en.wikipedia.org/wiki/WS-Security

ptg31978834

ENTERPRISE MASHUP SECURITY GUIDELINES 207

confidentiality using a variety of security models such as PKI, SSL, and
Kerberos

• XML Digital Signature (http://www.w3.org/TR/xmldsig-core/)—Specifies
syntax for applying digital signatures to XML data

• XML Encryption (http://www.w3.org/TR/xmlenc-core/)—Specifies mecha-
nisms for encrypting XML data

• XML Key Management (XKMS) (http://www.w3.org/2001/XKMS/)—
Specifies mechanisms and protocols for registering and distributing public
keys to be used with XML signatures and XML encryption

• WS-SecureConversation (http://www.ibm.com/developerworks/library/
specification/ws-secon/)—Specifies rules and mechanisms for sharing of
security contexts between web service providers and consumers using
token-based sessions

• WS-SecurityPolicy (http://www.ibm.com/developerworks/library/specifi-
cation/ws-secpol/)—Specifies how web services set constraints and
requirements as policy assertions to be applied to SOAP message security
within the context of the WS-Security, WS-Trust, and WS-SecureConversa-
tion specifications

• WS-Trust (http://www.ibm.com/developerworks/library/specification/ws-
trust/)—Specifies extensions and mechanisms for establishing trust rela-
tionships between messaging partners. Trust relationships are established
via the process of issuing, validating, and renewing security tokens

• WS-Federation (http://www.ibm.com/developerworks/library/specification/
ws-fed/)—Specifies mechanisms for allowing parties involved with security
identities to transfer identities, attributes, and authentication information

• Security Assertion Markup Language (SAML) (http://en.wikipedia.org/wiki/
SAML)—Specifies the means for exchanging XML-based authentication
and authorization data between identity providers and identity consumers

• XACML (http://en.wikipedia.org/wiki/XACML)—Specifies an XML-based,
access-control policy language and interpretation model for processing
policies

• WS-Federation—(http://www.ibm.com/developerworks/library/specification/
ws-fed/)—Specifies mechanisms for passing identity information, retriev-
ing identity information, and establishing authentication and authoriza-
tion claims between federation partners

From the Library of John Jeffrey Hanson

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/2001/XKMS/
http://www.ibm.com/developerworks/library/specification/ws-secon/
http://www.ibm.com/developerworks/library/specification/ws-secon/
http://www.ibm.com/developerworks/library/specification/ws-secpol/
http://www.ibm.com/developerworks/library/specification/ws-secpol/
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/library/specification/ws-trust/
http://www.ibm.com/developerworks/library/specification/ws-fed/
http://www.ibm.com/developerworks/library/specification/ws-fed/
http://en.wikipedia.org/wiki/SAML
http://en.wikipedia.org/wiki/SAML
http://en.wikipedia.org/wiki/XACML
http://www.ibm.com/developerworks/library/specification/ws-fed/
http://www.ibm.com/developerworks/library/specification/ws-fed/

ptg31978834

208 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

Once you have established firm and effective policies and promoted use of
industry specifications and standards throughout your organization, implemen-
tation details for securing mashup components and processes must be
addressed.

The following sections discuss implementation specifics for securing vital
parts of your mashup infrastructure.

Securing Input Data with Validation Techniques

Input validation is the foundation for securing a mashup application. Many
intruder attempts including SQL injection, cross-site request forgery, and cross-
site scripting can be prevented with a sound input validation model.

Your server-side validation framework should complement and support your
client-side validation framework. Client-side frameworks can be side-stepped
quite easily by clever individuals, so server-side validation is the final line of
defense for protecting data and processes.

An effective input-validation framework should be mindful of the following
items:

• Constraining input to a well-defined list of values.

• Validating the type of input data, as well as the input data length, range,
and format.

• Reusing regular expressions on the client (via JavaScript, for example) and
on the server with Java or other programming language that supports reg-
ular expressions. This enables a consistent validation framework on client
and server.

• Scrubbing input data for invalid characters.

Once input is validated, data transferred between client and server should be
sure to constrain content transferred between each other. This includes escaping
of special characters, as discussed next.

Escaping Special Characters to Avoid Dynamic Exploits

All mainstream web browsers can interpret scripts dynamically downloaded
from a server and embedded within a web page. Dynamic scripts such as these
may include malicious HTML tags or scripting code that can exploit security

From the Library of John Jeffrey Hanson

ptg31978834

ESCAPING SPECIAL CHARACTERS TO AVOID DYNAMIC EXPLOITS 209

vulnerabilities such as cross-site scripting. This problem can be averted by
ensuring that scripts are checked and content is encoded to prevent execution of
malicious code. An example of this is shown as follows:

<div>
This is some text
</div>

An escaped version of the preceding example would appear as follows:

<div>
This is some text
</div>

Mashup pages often contain HTML snippets and scripts that are generated
dynamically. Dynamically generated data should be validated and scrubbed to
be sure that the data does not contain any unexpected special characters, such
as HTML tags. If the dynamic data contains unexpected HTML markup, a web
browser can interpret the data as HTML markup and/or scripting code and
inadvertently execute the code as it is encountered by the browser. For this rea-
son, dynamic content must be validated to identify unexpected special charac-
ters, such as HTML tags or scripting code. Unexpected special characters
should be escaped to prevent inadvertent execution. Note that escaping in this
context should not be confused with “output encoding,” which typically refers
to setting the character set for a given page or document, as in the following
example:

<xsl:output method="html" encoding="ISO-8859-1" indent="no"/>

Data that is not validated and scrubbed for special characters runs the risk of
encountering the following security vulnerabilities:

• Data integrity compromised

• Cookies created and/or accessed by unwanted parties

• User input, such as passwords and credit card data, intercepted and
accessed by unwanted parties

• Execution of unwanted scripts within a trusted context or domain

The HTML specification is a good resource for identifying special charac-
ters. However, some characters are only special within the context used, such as
block-level elements, attribute values, and URLs. Therefore a comprehensive
analysis of each context is warranted to be sure to escape only characters that
could cause problems within each context. Many frameworks such as Apache

From the Library of John Jeffrey Hanson

ptg31978834

210 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

Commons Lang, Django, and web2py are freely available for addressing each
context and applying filtering to each context.

Defending against Session Fixation

Session fixation occurs when server-side code authenticates a user without first
invalidating existing sessions. This exposes the opportunity for intruders to
intercept authenticated sessions. An intruder can also create a new, legitimate
session with a server and record the session ID. This ID can then be used mali-
ciously in the event that another legitimate user creates a session that is identi-
fied by the same session ID. Hacking techniques are often employed to force
this situation.

Listing 6.1 shows sample Java code where a user is authenticated without
first invalidating the existing session using HttpSession.invalidate().

Listing 6.1 Example of Session Fixation Vulnerability
private boolean authenticateUser(HttpServletRequest req)
{
 // session.invalidate() should have been called prior to this
 // to invalidate an existing session

 HttpSession session = req.getSession(false);
 if (null != session)
 {
 // session is assumed to existing and valid
 // an intruder can exploit this situation
 return true;
 }

 if (validateCredentials(req) == true)
 {
 // create a new session
 req.getSession();
 return true;
 }

 return false;
}

The code in Listing 6.1 can be exploited in a situation where a session exists
and the browser is redirected back to the login page. If a new user provides
login information to the server, the server simply assumes that it is the same ses-
sion and returns a response to the user in the same manner as when a new session

From the Library of John Jeffrey Hanson

ptg31978834

PREVENTING CROSS-SITE REQUEST FORGERY ATTACKS 211

is created. This allows the owner of the existing session to potentially record
and exploit data that is transferred between the browser and the server as long
as the session exists. Cross-site scripting is often employed by attackers in this
situation to bypass browser restrictions and to redirect data to an alternate site
for recording.

Techniques to stop this type of attack include session timeouts, explicit ses-
sion invalidation via logout buttons and links, forcing the user to reenter
authentication data whenever sensitive data is accessed, storing session IDs in
HTTP cookies rather than in GET or POST variables, regenerating the session ID
on each request, and validating ancillary data during session activity.

The Spring Framework (http://www.springsource.org/) offerings provide fea-
tures that attempt to address session fixation.

Preventing Cross-Site Request Forgery Attacks

Cross-site request forgery (CSRF) attacks occur when malicious code, originat-
ing from a third-party site, fools a browser into sending unwanted requests to a
trusted site, such as a corporate mashup server.

The same-origin policy does not prevent requests being sent from a third-
party site; it only prevents requests being sent to a third-party site. Therefore,
the same-origin policy does not protect against CSRF attacks.

CSRF attacks depend on the assumption made by most servers that as long
as a request comes from the same browser that originally authenticated a ses-
sion with the server, any request or response transmitted over that authenti-
cated session is valid. Most standard authentication mechanisms—including
cookies, username/password, and SSL certificates—are at risk for CSRF attacks
since each mechanism authenticates sessions between a browser and the server
and not between a user and a server.

A CSRF attack occurs when a third-party site fools the browser into sending
a request to the mashup server over the authenticated session. The mashup
server assumes the request is a normal authenticated request from the mashup
page and performs the necessary actions as usual. The response is then trans-
mitted unknowingly to the third-party site. During a CSRF attack, a mashup
page establishes an authenticated session with the mashup server. Requests are
then passed from the mashup page to the mashup server across the authenti-
cated session. The mashup server confirms that the mashup page is authenti-
cated and allows each request to be performed. A CSRF attack sequence is
illustrated in Figure 6.2.

From the Library of John Jeffrey Hanson

http://www.springsource.org/

ptg31978834

212 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

Figure 6.2 illustrates a third-party site making authenticated requests to the
mashup server via the mashup page. This can only happen if the third-party site
can get the mashup page to make the requests in-proxy to the corporate
mashup server for the third-party site. HTML exposes ways to make this happen.

The HTML tag causes a web browser to access any URI specified as the
src attribute. A CSRF-attacker can expose a page with the following tag
embedded:

<img src="http://somebank/transfer?amount=15000&
 sourceaccount=12345& destinationacct=67890">

If a user visits the page containing that tag, while the user is authenti-
cated to somebank, the tag would instigate the browser into loading the URL
specified as the src attribute, and the server at somebank would assume the request
is valid and perform the requested action.

The preceding example instigates an HTTP GET request. This specific CSRF
attack could be averted by making sure the server at somebank does not use GET
requests to initiate changes on the server. Rather, require that only POST requests
can be used to initiate changes.

A simple mechanism for preventing CSRF attacks involves requiring each
HTTP request to include a user-specific request token, in addition to a standard
cookie. The user-specific request token is embedded in the body of each POST
request and in the URL of each GET request.

Figure 6.2 Sequence of events during a CSRF attack

Corporate
Mashup
Server

Process
Layer

Third-
Party Site

Web
Browser

Mashup
Page authenticated session

request/response

From the Library of John Jeffrey Hanson

ptg31978834

SECURING ON-DEMAND JAVASCRIPT 213

Securing On-Demand JavaScript

On-demand JavaScript is a technique in which a <script> tag and its accompany-
ing JavaScript source are embedded in an HTML page. When the <script> tag is
encountered, it is evaluated, and the JavaScript source is executed. One reason
for using on-demand JavaScript is to bypass the same-origin policy and retrieve
content from multiple sites. This mechanism is typically exploited by mashups
by retrieving <script> snippets from a server after the page has been loaded,
thereby only updating the portion of the page affected by the JavaScript source.

Listing 6.2 illustrates an example of three instances of on-demand JavaScript
embedded in an HTML page.

Listing 6.2 JavaScript Include Examples
 <html>
 <head>
 ...
 </head>
 <body>
 <script type="text/javascript" src="snippet1.js"></script>
 <script type="text/javascript" src="snippet2.js"></script>
 <script type="text/javascript" src="snippet3.js"></script>
 </body>
 </html>

In this example, all three instances will be evaluated and executed when the
HTML page is loaded.

On-demand JavaScript is often employed using AJAX and calls to a server via
the XMLHttpRequest object. In this scenario, a response from the server is formatted
as JavaScript. When the browser receives the response, it evaluates it and the
JavaScript is executed. Any actions specified in the JavaScript affecting UI com-
ponents are seen as the JavaScript is executed and the DOM is manipulated.

On-demand JavaScript has some obvious security vulnerabilities. Mainly,
since the same-origin policy is bypassed and embedded scripts are executed as
they are encountered, malicious code from external domains have a dangerous
degree of access to data and processes available to the page in which the scripts
are embedded. Specifically

• Scripts from external sites can access cookies associated with the hosting
page.

• Scripts are executed immediately as they are evaluated, leaving no course
of action to validate the scripts for potential security threats.

From the Library of John Jeffrey Hanson

ptg31978834

214 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

The typical solution currently employed to defend against on-demand secu-
rity vulnerabilities involves constraining on-demand JavaScript to a hidden
iframe. The hidden iframe then communicates with the main page to alter UI
components on the page. In this manner, scripts can be parsed and evaluated
prior to execution, thereby allowing a mashup to validate the script before exe-
cution. The script can be passed to the mashup server for further validation if
needed, and results can be communicated from the server back to the iframe or
to the parent page itself if desired.

Securing JSON

JSON is an acronym for JavaScript Object Notation, which aptly indicates that
JSON data is actually an integral part of the JavaScript programming language.
This means that JSON data can be used, as is, in a JavaScript function or statement.
Specifically, the eval() function can be used to evaluate/interpret JSON data.

Observe the sample JSON data in Listing 6.3.

Listing 6.3 A Typical JSON Object
 [
 {
 name: "object 1",
 message: "Hello from object 1",
 evil: alert("You should not see this!")
 },
 {
 name: "object 2",
 message: "Hello from object 2"
 },
 {
 name: "object 3",
 message: "Hello from object 3"
 },
 {
 name: "object 4",
 message: "Hello from object 4"
 },
 {
 name: "object 5",
 message: "Hello from object 5"
 },
 {
 name: "object 6",
 message: "Hello from object 6"
 }
]

From the Library of John Jeffrey Hanson

ptg31978834

SECURING JSON 215

When the JSON data shown in Listing 6.3 is interpreted, any valid JavaScript
instructions embedded in the JSON data are executed. This mechanism is useful
for receiving data responses from a server using the XMLHttpRequest object and
used in a mashup page. However, this mechanism also presents some significant
security vulnerabilities.

When JSON data is dynamically loaded, as with an XMLHttpRequest response, it
can be easily interpreted on-the-fly and converted into standard JavaScript. Any
executable JavaScript embedded within the JSON data is executed immediately
as it is interpreted. JavaScript’s eval() function, shown in the following example,
is a common mechanism used to interpret JSON data dynamically.

var jsonObj = eval('(' + responseText + ')');

JSON data interpreted by the preceding eval() function executes immedi-
ately. If the data is retrieved from an attacker site (as is possible in a proxy-
server scenario) and contains a malicious script, sensitive data can be stolen and
used—and the attacker can now execute any code within the mashup page.

The example in Listing 6.4 illustrates JSON data that is preceded by a
while(1); statement. This technique assumes that the client will remove the
while(1); statement before using the JSON data. If the while(1); statement is not
removed and the JavaScript eval() function is called, the browser will go into an
endless loop as the while(1); executes.

Listing 6.4 A JSON Object Preceded by a while Loop
while(1);
 [
 {
 name: "object 1",
 message: "Hello from object 1",
 evil: alert("You should not see this!")
 },
 {
 name: "object 2",
 message: "Hello from object 2"
 },
 {
 name: "object 3",
 message: "Hello from object 3"
 },
 {
 name: "object 4",
 message: "Hello from object 4"
 },
 {
 name: "object 5",
 message: "Hello from object 5"
 },

From the Library of John Jeffrey Hanson

ptg31978834

216 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

 {
 name: "object 6",
 message: "Hello from object 6"
 }
]

Another technique for processing JSON data safely is to use the JSON.parse
function from the libraries provided at http://www.json.org/ instead of eval() to
eliminate risk of executing embedded functions, as in Listing 6.5.

Listing 6.5 Removing while Loop from a JSON Object
// include the json2 libraries
<script type="text/javascript" src="js/json2.js"></script>

// use JSON.parse instead of eval
var jsonObj = JSON.parse(jsonTxt);

The example in Listing 6.6 illustrates JSON data that is wrapped between
comments. The comments prevent functions embedded within the JSON data
from executing. The comments must be removed on the client before using.

Listing 6.6 A JSON Object Wrapped in Comments
/*
 [
 {
 name: "object 1",
 message: "Hello from object 1",
 evil: alert("You should not see this!")
 },
 {
 name: "object 2",
 message: "Hello from object 2"
 },
 {
 name: "object 3",
 message: "Hello from object 3"
 },
 {
 name: "object 4",
 message: "Hello from object 4"
 },
 {
 name: "object 5",
 message: "Hello from object 5"
 },
 {
 name: "object 6",

From the Library of John Jeffrey Hanson

http://www.json.org/

ptg31978834

SANITIZING HTML 217

 message: "Hello from object 6"
 }
]
*/

The JavaScript function in Listing 6.7 removes comments from a JSON
string and can, therefore, be used to remove comments from the JSON data in
Listing 6.6.

Listing 6.7 Removing Comments from a JSON Object
function removeComments(jsonStr)
{
 return jsonStr.replace(/\/*|*\//g, "");
}

JSON data provides a useful and optimized means for retrieving JavaScript-
compatible data from a server dynamically and used in mashup pages. How-
ever, this usefulness comes at the price of some significant security issues. With
proper parsing of JSON data on the client, these security issues can be resolved
and disaster averted.

Sanitizing HTML

Mashup pages are constructed from artifacts of code and data in many forms.
Some of these artifacts take the form of HTML fragments dynamically inserted
into a web page by manipulating the DOM for the page. Many of the HTML
fragments used in mashups are snippets of JavaScript code embedded within
<script> tags. As the embedded scripts are encountered, they are executed imme-
diately by the browser. This technique can be dangerous if the JavaScript con-
tains malicious code. Therefore, HTML fragments should be validated or
“sanitized” before using.

Data returned from dynamic requests, such as those executed via the XMLHttp-
Request object should be validated. Regular expressions can be used to verify
that the data is properly formed. Listing 6.8 shows an example of a JavaScript
function that validates a string and only allows brackets, digits, dashes, and
spaces between 1 and 20 characters long.

Listing 6.8 Validating Input Data
function validateString(aStr)
{
 var regex = /^[\d\-\(\)\s]{1,20}$/gi;
 return regex.exec(aStr);
}

From the Library of John Jeffrey Hanson

ptg31978834

218 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

Once data has been validated, it should be sanitized prior to applying to the
HTML page to prevent malicious content from being embedded in the page.
The JavaScript function in Listing 6.9 illustrates a mechanism that inserts data
into the DOM of a page as plain text, therefore preventing the data from exe-
cuting if it contains malicious HTML.

Listing 6.9 Sanitizing Data Prior to Rendering
function sanitize(textData)
{
 var text = document.createTextNode(textData);
 // script won't be executed;
 document.getElementById('foo').appendChild(text);
}

Setting the content type explicitly can help to prevent security flaws due to
data not being validated in its intended encoding. The following line sets the
Content-Type for a page to UTF-8 encoding:

<meta http-equiv="Content-Type"
 content="text/html;charset=UTF-8">

Dynamic insertion of HTML fragments is a prevalent mechanism for build-
ing mashup pages today. However, potential security vulnerabilities can be
exploited if the fragments are not validated and sanitized.

Securing iframes

Inline frames (iframes) are embedded HTML components that allow UI render-
ing and HTTP communication as separate entities. iframes are effective mecha-
nisms for building secure UI artifacts and content snippets used in mashups.
One reason for this is that iframes present a technique for isolating potentially
untrusted content within a browser page, since content placed inside an iframe
cannot manipulate the DOM or other browser components residing outside the
iframe.

iframes are constructed using HTML code similar to Listing 6.10.

Listing 6.10 Example of an iframe
<iframe src="http://example.com/iframe1.html" />
<iframe src="http://example.com/iframe2.html" />

An iframe containing visual UI components is typically rendered in a browser
using an embedded window with a border/frame, scrollbars, and other ele-
ments. However, iframes can be hidden and often are hidden to use as commu-
nication vehicles within a browser document. Figure 6.3 illustrates this concept.

From the Library of John Jeffrey Hanson

ptg31978834

SECURING IFRAMES 219

Figure 6.3 illustrates a main page that is embodied by index.html found at
example.com. A hidden iframe is embedded within the main page document. The
hidden iframe is constructed with content found at example.com/consumer.html.
The JavaScript function, transmitData sets the src URL for the hidden iframe to
consumer.html#data_to_be_used. The portion of the src URL following the hash
mark (fragment identifier) can be extracted using the window.location.hash ele-
ment. This is exactly what the function defined for the onLoad event does. There-
fore, when the main document loads, the hidden iframe can retrieve the data
following the fragment identifier of its own src URL and use it as it wants. This
interplay is often used to communicate data between iframes or between con-
taining documents and child iframes.

There is a security vulnerability using the “src URL” data-passing mecha-
nism. Specifically, the src URL can be set by any component on the main page.
If a UI artifact or content snippet is embedded in the page from an external site
and the snippet or UI artifact contains malicious code, the iframe can be com-
promised. If the iframe is interacting with server-side code, data can be tainted
or stolen.

The following tasks prevent attacks exploiting iframe fragment-identifier
data passing:

• Validate the domain modifying fragment-identifiers to ensure that data is
accepted from white-listed domains. JavaScript can be employed to moni-
tor data passing and apply white-listing validation.

Figure 6.3 Data passing between an iframe and main browser page

function transmitData()
{
 iframe.src=“http://example.com/consumer.html#data_to_be_used”;
}

Main Page (example.com/index.html)

window.onLoad = function()
{
 data = window.location.hash;
}

Hidden iframe (example.com/consumer.html)

From the Library of John Jeffrey Hanson

ptg31978834

220 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

• Encrypt fragment-identifier data using the public key of the domain for the
main web page.

• Include the identity of the fragment-identifier modifier in the encrypted data.

• Filter JavaScript embedded in fragment-identifier data.

• Filter embedded iframes in fragment-identifier data.

Authentication and Authorization

Authentication and authorization are complex issues to address in a mashup
environment since many requests can be transmitted to several different ser-
vices, many of which may require authentication.

A scenario where multiple authentication requests are needed to construct a
mashup page using disparate services on several different sites is a fundamental
concern for mashup developers. A few different single sign-on standards are
emerging to address this concern, such as OpenID, OAuth, and others.

OpenID is a decentralized standard and framework gaining momentum as a
single sign-on solution. OpenID allows the use of an existing URL owned by a
user as the account ID that can be used to authenticate a user on any site sup-
porting OpenID. The OpenID framework and standard requires the user to
maintain only one set of credentials to be used for multiple sites.

OpenID enables single sign-on by using a URL as a user’s identity. A site
needing authentication credentials from a user utilizes the user’s URL (blog site
address, personal web site, social site URL, and so on) as the primary identifier
of the user. This URL along with one username/password pair allows OpenID
providers to authenticate a user with many different services and sites.

Many mainstream services are already supporting OpenID, therefore making
it possible for users of their services to use the URL associated with their ser-
vices as OpenID URLs. Some of the services supporting OpenID are

• Blogger

• AOL

• Flickr

• MySpace

• Technorati

• Yahoo!

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 221

MyOpenID.com is a service that allows you to create an OpenID account to
be used with any OpenID provider.

Figure 6.4 illustrates the typical relationships and interactions between
OpenID services and parties.

In Figure 6.4, a user makes a request from her browser to a site requiring
authentication. The user offers her OpenID URL to the site, and the site passes
this OpenID to an OpenID provider. The OpenID provider requests a username
and password from the user. If the username and password are valid, the
OpenID provider returns a response to the site requiring authentication and the
user’s request is completed. The username and password remain the same
regardless of which OpenID-supported site the user sends requests.

Applying Security to a Mashup Infrastructure

As defined in the previous sections, dynamic data and code are used extensively
to pass requests to mashup servers and to construct mashup pages from data
received from mashup servers and external sites. This dynamic data must be

Figure 6.4 Basic OpenID interaction between involved parties

Secured
Page

OpenID
Provider

External
SiteUser

OpenID
Server

Credentials
Store

secured request
from user’s browser

response

username/
password
request

authentication
request

authentication
response

username/
password

result

From the Library of John Jeffrey Hanson

ptg31978834

222 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

validated and sanitized before using to avoid the many potential security risks
that abound with the use of dynamic data processing.

This section applies the concepts discussed in this chapter for securing and
validating data before it is applied to the construction of a mashup.

Validation Framework

The software components of an input validation framework are used to process
data received from a browser client. To provide functionality supporting proper
input validation, the framework can use components based on regular expression
parsing. This allows validation code to be shared on the client as JavaScript and
on the server as Java.

Figure 6.5 illustrates the relationships and definitions of the primary classes
participating in an input validation framework.

As Figure 6.5 illustrates, relationships between classes and interfaces in a
simple validation framework revolve around a Validator interface. The Contacts-
Validator class implements the Validator interface and contains logic for validat-
ing contact information.

The sequence of invocations as flow-of-control traverses through the valida-
tion framework is illustrated in Figure 6.6.

As shown in Figure 6.6, a Validator client retrieves an instance of the Validator
interface from the ValidatorFactory class. Values are then passed to the Validator
instance to be validated against given field names. A boolean result is returned
indicating the result of each validation attempt.

Figure 6.5 Class diagram for the validation framework

+ Validator

+ methods
fields

+ ContactsValidator

+ methods
constructors

+ fields

implements Validator

+ ValidatorFactory

+ methods
constructors
fields

+ FrontController extends HttpServlet

+ methods
constructors
fields

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 223

Listing 6.11 provides the details for a ValidatorFactory class in which instances
of Validator implementations are created and returned.

Listing 6.11 ValidatorFactory Class
public class ValidatorFactory
{
 public static final String CONTACTS_VALIDATOR = "Contacts";

 public static Validator getValidator(String validatorName)
 {
 try
 {
 if (validatorName.equalsIgnoreCase(CONTACTS_VALIDATOR))
 {
 return
 new com.jeffhanson.mashups.web.ContactsValidator();
 }
 else
 {
 throw new Exception("Validator: "
 + validatorName + " is not supported in "
 + "ValidatorFactory.getValidator()");
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 return null;
 }
}

Figure 6.6 Sequences for a simple validation interaction

ValidatorFactory Validator FrontController

1.1:getValidator

1.2:|public|abstract|@fieldNames[]:java.util.Iterator<java.lang.String>

1.3:validate

From the Library of John Jeffrey Hanson

ptg31978834

224 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

As detailed in Listing 6.11, the ValidatorFactory class does a simple string
lookup to find the name of the class implementing the Validator interface that is
to be instantiated and returned. If the name is invalid an exception is thrown
and null is returned.

An input validator is defined by the Validator interface. As shown in Listing
6.12, the Validator interface is comprised of a method allowing retrieval of all
field names supported by a given validator implementation and a method that
validates a given value for a field name. A simple boolean value is returned
from the validate method indicating whether the value passes the validation test.

Listing 6.12 Validator Interface
public interface Validator
{
 Iterator<String> fieldNames();
 boolean validate(String fieldName, String fieldValue);
}

Listing 6.12 illustrates the methods required for classes implementing the
Validator interface. The fieldNames method must return a list of all fields that are
to be validated for the class. The validate method must validate values for a
given field supported by the class.

Listing 6.13 shows the details for a class that validates fields typically found
in a form that gathers contact information. The class implements the Validator
interface with bodies for the fieldNames method and the validate method. The val-
idate method employs the same regular expression used by client-side JavaScript
input validation.

Listing 6.13 ContactsValidator Class
public class ContactsValidator
 implements Validator
{
 public static final String CONTACT_NAME = "contact_name";
 public static final String CONTACT_ADDRESS =
 "contact_address";
 public static final String CONTACT_CITY = "contact_city";
 public static final String CONTACT_STATE = "contact_state";
 public static final String CONTACT_ZIP = "contact_zip";
 public static final String CONTACT_PHONE = "contact_phone";
 public static final String CONTACT_EMAIL = "contact_email";

 public static final String[] STATES = {
 "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "DC", "FL",
 "GA", "HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME",
 "MD", "MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH",
 "NJ", "NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI",

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 225

 "SC", "SD", "TN", "TX", "UT", "VT", "VA", "WA", "WV", "WI",
 "WY"
 };

 private static final ArrayList<String> fieldNames =
 new ArrayList<String>()
 {{
 add(CONTACT_NAME);
 add(CONTACT_ADDRESS);
 add(CONTACT_CITY);
 add(CONTACT_STATE);
 add(CONTACT_ZIP);
 add(CONTACT_PHONE);
 add(CONTACT_EMAIL);
 }};

 public Iterator<String> fieldNames()
 {
 return fieldNames.iterator();
 }

 public boolean validate(String fieldName,
 String fieldValue)
 {
 if (fieldName.equalsIgnoreCase(CONTACT_NAME))
 {
 return fieldValue.matches("^([a-z A-Z]+)$");
 }
 else if (fieldName.equalsIgnoreCase(CONTACT_ADDRESS))
 {
 return fieldValue.matches("^([a-z A-Z1-9]+)$");
 }
 else if (fieldName.equalsIgnoreCase(CONTACT_CITY))
 {
 return fieldValue.matches("^([a-z A-Z]+)$");
 }
 else if (fieldName.equalsIgnoreCase(CONTACT_STATE))
 {
 for (int i = 0; i < STATES.length; i++)
 {
 if (fieldValue.equalsIgnoreCase(STATES[i]))
 {
 return true;
 }
 }
 }
 else if (fieldName.equalsIgnoreCase(CONTACT_ZIP))
 {

From the Library of John Jeffrey Hanson

ptg31978834

226 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

 return fieldValue.matches("(^\\d{5}$)|(^\\d{5}-"
 + "\\d{4}$)");
 }
 else if (fieldName.equalsIgnoreCase(CONTACT_PHONE))
 {
 return fieldValue.matches("^\\([1-9]\\d{2}\\)\\s?"
 + "\\d{3}\\-\\d{4}$");
 }
 else if (fieldName.equalsIgnoreCase(CONTACT_EMAIL))
 {
 return fieldValue.matches("(^[a-z]([a-z_\\.]*)"
 + "@([a-z_\\.]*)([.]"
 + "[a-z]{3})$)|(^[a-z]"
 + "([a-z_\\.]*)@([a-z_"
 + \\.]*)(\\.[a-z]{3})
 + "(\\.[a-z]{2})*$)");
 }

 return false;
 }
}

Implementations of the Validator interface are required to provide bodies for
the fieldNames, and validate methods. Values are validated for specific field names
by applying regular expressions against values. The regular expressions are
shared with JavaScript embedded in a browser page, thereby providing a con-
sistent validation model across client and server.

Listing 6.14 shows a front controller servlet that handles HTTP requests.
The request parameters are retrieved and passed to the validator class to deter-
mine whether they pass validation. If an invalid value is encountered, an error is
returned and the user is allowed to go back and correct the error.

Listing 6.14 FrontController Class
public class FrontController extends HttpServlet
{
 protected void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("<h3>GET processed successfully</h3>");
 }

 protected void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 227

 Validator validator =
 ValidatorFactory.
 getValidator(ValidatorFactory.CONTACTS_VALIDATOR);

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 Iterator<String> iter = validator.fieldNames();
 while (iter.hasNext())
 {
 String fieldName = iter.next();
 String fieldValue = req.getParameter(fieldName);
 if ((null == fieldValue) || fieldValue.length() <= 0)
 {
 out.println("<h3>" + fieldname
 + " not found. Press back button.</h3>");
 }
 else if (!validator.validate(fieldName, fieldValue))
 {
 out.println("<h3>" + fieldname
 + " is invalid. Press back button.</h3>");
 }
 }

 out.println("<h3>POST data validated successfully</h3>");
 }

 protected void doPut(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("<h3>PUT processed successfully</h3>");
 }

 protected void doDelete(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("<h3>DELETE processed successfully</h3>");
 }
}

As Listing 6.14 illustrates, request parameters are checked for valid input by
the specific validator returned from the validator factory. The validator is

From the Library of John Jeffrey Hanson

ptg31978834

228 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

assumed to be the “contacts” validator in this scenario. Production implemen-
tations of the front controller would determine the name of the validator based
on the request content and context.

Listing 6.15 shows an HTML page that provides a JavaScript validation
framework that validates every field for a contacts form on the page. Regular
expressions that are shared with the server-side validation are applied against
the form values to determine whether they are valid. If a value is found to be
invalid, an error alert is presented to the user and the input focus is returned to
the field containing the invalid value.

Listing 6.15 HTML Form Validation with JavaScript Regular Expressions
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Validation test</title>
 <script type="text/javascript">
 //<![CDATA[

 function validateName(val)
 {
 var valRegExp = /^([a-z A-Z]+)$/;
 return valRegExp.test(val);
 }

 function validateAddress(val)
 {
 var valRegExp = /^([a-z A-Z1-9]+)$/;
 return valRegExp.test(val);
 }

 function validateCity(val)
 {
 var valRegExp = /^([a-z A-Z]+)$/;
 return valRegExp.test(val);
 }

 function validateZip(val)
 {
 var valRegExp = /(^\d{5}$)|(^\d{5}-\d{4}$)/;
 return valRegExp.test(val);
 }

 function validatePhone(val)
 {
 var valRegExp = /^\([1-9]\d{2}\)\s?\d{3}\-\d{4}$/;
 return valRegExp.test(val);
 }

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 229

 function validateEmail(val)
 {
 var valRegExp =
 /(^[a-z]([a-z_\.]*)@([a-z_\.]*)([.][a-z]{3})$)|
 (^[a-z]([a-z_\.]*)@([a-z_\.]*)(\.[a-z]{3})
 (\.[a-z]{2})*$)/;
 return valRegExp.test(val);
 }

 function validateFormInput(form)
 {
 if (form.contact_name.value == "")
 {
 alert("Please enter your name.");
 form.contact_name.focus();
 return false ;
 }
 if (!validateName(form.contact_name.value))
 {
 alert("Name contains invalid characters.");
 form.contact_name.focus();
 return false ;
 }

 if (form.contact_address.value == "")
 {
 alert("Please enter your address.");
 form.contact_address.focus();
 return false ;
 }
 if (!validateAddress(form.contact_address.value))
 {
 alert("Address contains invalid characters.");
 form.contact_address.focus();
 return false ;
 }

 if (form.contact_city.value == "")
 {
 alert("Please enter your city.");
 form.contact_city.focus();
 return false ;
 }
 if (!validateCity(form.contact_city.value))
 {
 alert("City contains invalid characters.");
 form.contact_city.focus();
 return false ;
 }

From the Library of John Jeffrey Hanson

ptg31978834

230 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

 if (form.contact_zip.value == "")
 {
 alert("Please enter your zip.");
 form.contact_zip.focus();
 return false ;
 }
 if (!validateZip(form.contact_zip.value))
 {
 alert("Zip code must be in the form of "
 + "nnnnn or nnnnn-nnnn.");
 form.contact_phone.focus();
 return false ;
 }

 if (form.contact_phone.value == "")
 {
 alert("Please enter your phone.");
 form.contact_phone.focus();
 return false ;
 }
 if (!validatePhone(form.contact_phone.value))
 {
 alert("Phone number must be in the form of "
 + "(nnn) nnn-nnnn or (nnn)nnn-nnnn.");
 form.contact_phone.focus();
 return false ;
 }

 if (form.contact_email.value == "")
 {
 alert("Please enter your email address.");
 form.contact_email.focus();
 return false ;
 }
 if (!validateEmail(form.contact_email.value))
 {
 alert("Email address must be in the form of "
 + "cccccccc@ccc.com, cccccccc@ccc.org, etc.");
 form.contact_email.focus();
 return false ;
 }

 // form.action.value = "process.cgi";

 return true ;
 }

 //]]>
 </script>

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 231

</head>
<body>

<table border="1">
 <form method="POST"
 action="http://localhost:8080/validate/v/test"
 onsubmit="return validateFormInput(this);"
 name="ValidateInputTestForm">
 <tr><td>Name:</td><td colspan="5"><input type="text" name="contact_name" size="100"
maxlength="40"/></td></tr>
 <tr><td>Address:</td><td colspan="5"><input type="text" name="contact_address"
size="100" maxlength="40"/></td>
</tr>
 <tr><td>City:</td><td><input type="text"
 name="contact_city"
 size="44"
 maxlength="20"/>
 </td>
 <td>State:</td>
 <td>
 <select name="contact_state">
 <option value="AL">AL</option>
 <option value="AK">AK</option>
 ...
 <option value="WI">WI</option>
 <option value="WY">WY</option>
 </select>
 </td>
 <td>Zip:</td><td><input type="text"
 name="contact_zip"
 size="24"
 maxlength="10"/></td>
 </tr>
 <tr><td>Phone:</td><td colspan="5"><input type="text"
 name="contact_phone" size="20" maxlength="14"/></td>
 </tr>
 <tr><td>Email:</td><td colspan="5"><input type="text"
 name="contact_email" size="100" maxlength="50"/></td>
 </tr>
 <tr><td colspan="6" align="center"><input type="submit" value="Submit"
name="submit"/></td></tr>
 </form>
</table>

</body>

</html>

From the Library of John Jeffrey Hanson

ptg31978834

232 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

As illustrated in Listing 6.15 the validateFormInput JavaScript function is called
when the submit button is clicked. If the function returns true, the form directs
an HTTP POST request at a URL pointing to the server containing the front con-
troller servlet. The input values, passed as HTTP request parameters, are then
validated by the server validation framework before allowing the actions of the
HTTP request to execute.

As shown in the preceding section, a proper input validation framework
should provide a consistent validation model on the client and server.

Secure JSON Framework

The framework described in this section provides functionality for protecting
JSON data transmissions between server and client. The framework provides
software components that reside in a client-side browser page as JavaScript and
on server-side processing logic as Java. To provide functionality supporting
proper input validation, the framework can use components based on regular
expression parsing. This allows validation code to be shared on the client as
JavaScript and on the server as Java.

The component interactions as flow-of-control traverses through the secure
JSON framework are illustrated in Figure 6.7.

As shown in Figure 6.7 the secure JSON framework is concerned with
retrieving JSON data from the data layer, preparing the data for delivery to a
client browser, and then passing the data to the client as responses to HTTP
requests invoked by the client.

Listing 6.16 illustrates the JavaScript components used by client code embed-
ded in a browser page to invoke AJAX requests to server-side processes where
the server performs business logic and returns results as JSON data.

The AJAX requests sent from the code in Listing 6.16 are all invoked syn-
chronously. AJAX requests are performed synchronously to receive responses
from the server before returning control to the caller.

Figure 6.7 Component interactions for secure JSON framework

Mashup
Page

request/
response

Corporate
Mashup
Server

Retrieve
JSON data

Process
Layer

Data
Layer

JavaScript
includes

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 233

Listing 6.16 ajax.js
//===
// initializes the XMLHTTP object
//===
function getHTTPObject()
{
 var xmlhttp = null;
 var success = false;

 // List of MS XMLHTTP versions - newest first
 var MSXML_XMLHTTP_PROGIDS = new Array(
 'MSXML2.XMLHTTP.5.0',
 'MSXML2.XMLHTTP.4.0',
 'MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP'
);

 for (var i = 0;
 i < MSXML_XMLHTTP_PROGIDS.length && !success;
 i++)
 {
 try
 {
 xmlhttp = new ActiveXObject(MSXML_XMLHTTP_PROGIDS[i]);
 success = true;
 return xmlhttp;
 }
 catch (e)
 {
 xmlhttp = false;
 }
 }

 if (!xmlhttp && typeof XMLHttpRequest != 'undefined')
 {
 try
 {
 xmlhttp = new XMLHttpRequest();
 }
 catch (e)
 {
 xmlhttp = false;
 }
 }

 return xmlhttp;
}

From the Library of John Jeffrey Hanson

ptg31978834

234 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

//===
// performs a synchronous Ajax request
//===
function ajaxSyncRequest(apiURL,
 getOrPost,
 requestData,
 callbackFunc)
{
 var xmlRequest = getHTTPObject();

 xmlRequest.open(getOrPost, apiURL, false);
 xmlRequest.send(requestData);

 if (xmlRequest.status == 200)
 {
 if (callbackFunc)
 {
 if (xmlRequest.responseText)
 {
 callbackFunc(xmlRequest.responseText);
 }
 }
 }
 else
 {
 alert("ajaxSyncRequest failed with status: "
 + xmlRequest.status);
 }
}

The caller of the ajaxSyncRequest function passes a callback function that is
invoked when the AJAX invocation completes. The AJAX response is passed as
text to the callback function for processing.

Listing 6.17 illustrates how the ajaxSyncRequest function can be called and
provided with a callback function. The callback function in this example is
testResultHandler. This function receives the AJAX invocation result as JSON
data formatted as plain text. The JSON data then must be interpreted or parsed
to use it as actual JavaScript code.

Listing 6.17 index.jsp
<html>
<head>
<title>Test for secure JSON</title>

 <script type="text/javascript" src="js/json2.js"></script>
 <script type="text/javascript" src="js/ajax.js"></script>

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 235

<script type="text/javascript">

//<![CDATA[

//===
// removes comments wrapped around a JSON object
//===
function removeComments(jsonStr)
{
 return jsonStr.replace(/\/*|*\//g, "");
}

//===
// test callback
//===
function testResultHandler(responseText)
{
 if (responseText)
 {
 alert("Raw results = " + responseText);

 var jsonTxt = removeComments(responseText);

 alert("Sanitized results = " + jsonTxt);

 try
 {
 // Use JSON.parse instead of eval(jsonTxt) to,
 // among other things,
 // eliminate risk of executing embedded functions
 var jsonObj = JSON.parse(jsonTxt);
 for (var i in jsonObj)
 {
 alert("JSON obj " + i + " = "
 + JSON.stringify(jsonObj[i]));
 }
 }
 catch (e)
 {
 alert("Embedded functions caused exception in JSON.parse");
 }
 }
 else
 {
 alert("testResultHandler responseText is null");
 }
}

From the Library of John Jeffrey Hanson

ptg31978834

236 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

//]]>

</script>
</head>

<body>
<form method="GET"
 action="javascript:ajaxSyncRequest(
 'http://host/json/commented',
 'GET',
 'rigma',
 testResultHandler)"
 name="getCommentedDataForm">
 <input type="submit"
 value="Get Commented JSON Data"
 name="submit"/>
</form>

<p/>

<form method="GET"
 action="javascript:ajaxSyncRequest(
 'http://host/json/evilfuncs',
 'GET',
 'rigma',
 testResultHandler)"
 name="getEmbeddedFuncsDataForm">
 <input type="submit"
 value="Get JSON Data with Embedded Functions"
 name="submit"/>
</form>

</body>
</html>

Listing 6.17 illustrates how the JSON.parse is used to create a JSON object
from text returned from an AJAX invocation. The JSON.parse method is found in
the json2.js library. The JSON.parse method prevents embedded functions that
may be present in the returned JSON data from executing as the JSON text is
evaluated.

Listing 6.18 shows the details for a servlet that is used to receive AJAX
requests from a browser client. The requests are processed and JSON data is
returned. In this case two types of JSON data can be returned: a secured block
of JSON data wrapped between comments and a block of JSON data contain-
ing an embedded function that demonstrates how destructive actions could be
performed by a malicious function embedded in the data.

From the Library of John Jeffrey Hanson

ptg31978834

APPLYING SECURITY TO A MASHUP INFRASTRUCTURE 237

Listing 6.18 AJAX Front-Controller Servlet
public class FrontController extends HttpServlet
{
 private static final String JSON_COMMENTED =
 "/*" +
 "[" +
 " {" +
 " \"name\": \"object 1\"," +
 " \"message\": \"Hello from object 1\"" +
 " }," +
 " {" +
 " \"name\": \"object 2\"," +
 " \"message\": \"Hello from object 2\"" +
 " }," +
 " {" +
 " \"name\": \"object 3\"," +
 " \"message\": \"Hello from object 3\"" +
 " }," +
 " {" +
 " \"name\": \"object 4\"," +
 " \"message\": \"Hello from object 4\"" +
 " }," +
 " {" +
 " \"name\": \"object 5\"," +
 " \"message\": \"Hello from object 5\"" +
 " }," +
 " {" +
 " \"name\": \"object 6\"," +
 " \"message\": \"Hello from object 6\"" +
 " }" +
 "]" +
 "*/";

 private static final String JSON_EMBEDDED_FUNCS =
 "[" +
 " {" +
 " name: \"object 1\"," +
 " message: \"Hello from object 1\"," +
 " evil: alert(\"You should not see this!\")" +
 " }," +
 " {" +
 " name: \"object 2\"," +
 " message: \"Hello from object 2\"" +
 " }," +
 " {" +
 " name: \"object 3\"," +
 " message: \"Hello from object 3\"" +
 " }," +

From the Library of John Jeffrey Hanson

ptg31978834

238 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

 " {" +
 " name: \"object 4\"," +
 " message: \"Hello from object 4\"" +
 " }," +
 " {" +
 " name: \"object 5\"," +
 " message: \"Hello from object 5\"" +
 " }," +
 " {" +
 " name: \"object 6\"," +
 " message: \"Hello from object 6\"" +
 " }" +
 "]";

 protected void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 String messageResult = "{\"result\": \"failed\"}";

 String resource = req.getPathInfo();
 if (null != resource &&
 resource.equalsIgnoreCase("/commented"))
 {
 messageResult = JSON_COMMENTED;
 }
 else if (null != resource &&
 resource.equalsIgnoreCase("/evilfuncs"))
 {
 messageResult = JSON_EMBEDDED_FUNCS;
 }

 res.setContentType("application/json");
 PrintWriter out = res.getWriter();
 out.println(messageResult);
 }

 protected void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("application/json");
 PrintWriter out = res.getWriter();
 out.println("{\"result\": \"success\"}");
 }

 protected void doPut(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException

From the Library of John Jeffrey Hanson

ptg31978834

SUMMARY 239

 {
 res.setContentType("application/json");
 PrintWriter out = res.getWriter();
 out.println("{\"result\": \"success\"}");
 }

 protected void doDelete(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 res.setContentType("application/json");
 PrintWriter out = res.getWriter();
 out.println("{\"result\": \"success\"}");
 }
}

The front controller servlet shown in Listing 6.18 returns either the secured
JSON data or the block of JSON data containing the potentially dangerous
embedded function. The content type for the returned HTTP response is set to
application/json and the data is passed as textual JSON data that is to be parsed
or evaluated by the web browser client.

Validating input values and constraining JSON data are just two of the
building blocks needed for a secured mashup infrastructure. The frameworks
shown in the preceding sections provide a simple but effective means for vali-
dating data and protecting JSON data to be used in AJAX invocations.

Summary

This chapter discussed fundamental security issues that must be addressed
when designing and implementing mashup components, processes, and arti-
facts. The open nature of the mashup development model causes security to be
a primary concern for developers of a mashup infrastructure. They must be pre-
pared to handle such security issues as cross-site request forgery (CSRF), AJAX
security weaknesses, cross-site scripting, and secure sign-on across multiple
domains.

Because a mashup is a page or application built typically using data com-
bined from more than one site, security vulnerabilities can multiply quickly. In
addition, external mashups can embed your components and UI artifacts,
thereby combining your functionality and data with components and UI arti-
facts of unknown origin. It’s your responsibility to protect your data and func-
tionality from hackers and other intrusions.

From the Library of John Jeffrey Hanson

ptg31978834

240 CHAPTER 6 APPLYING PROPER TECHNIQUES TO SECURE A MASHUP

External components must be included in a development team’s testing pro-
cess right alongside an organization’s own components. External components
should be tested individually and in aggregate with other components of a given
mashup. And because hackers never rest, security testing should be performed
on a continuous basis to guard against new exploits and to ensure that your
application or infrastructure remains secure.

In the next chapter I discuss the concepts presented thus far as a step-by-step
tour through the technologies and implementations for each high-level mashup
category.

From the Library of John Jeffrey Hanson

ptg31978834

241

Chapter 7

Step-by-Step: A Tour through
a Sample Mashup

To this point, I have discussed the importance of analyzing the specific program-
ming entities that can be combined in a mashup along with the corresponding
issues and solutions for each. This has been presented as three high-level cate-
gories of items—user interface artifacts (presentation), data (resources), and/or
application functionality (processes). UI artifacts include such entities as HTML
snippets, on-demand JavaScript, web service APIs, RSS feeds, and/or other sun-
dry pieces of data. The implementation style, techniques, and technologies used
for each category of mashup items present certain constraints and subtleties.

In this chapter I discuss the concepts presented thus far as a step-by-step tour
through the technologies and implementations for each high-level mashup category.

Building the Mashup Presentation Layer

The presentation layer for a given mashup can pull from a local service plat-
form, publicly available APIs, RSS data feeds, dynamic JavaScript snippets,
widgets, and badges.

The presentation page shown in the following listings illustrates techniques
for viewing disparate data in a portal-like manner. The page integrates business
documents, a geocoded map, an RSS feed, a calendar gadget, a Twitter counter
chicklet, and a Twitter archive list delivered as RSS.

Most third-party UI artifacts rely on an API key to be presented to the third-
party site for a page to use the artifacts. Listing 7.1 illustrates the use of an API
key to access the Google Maps UI artifacts APIs.

From the Library of John Jeffrey Hanson

ptg31978834

242 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

Listing 7.1 Presenting an API Key to Access Google Maps UI Artifacts
<html>
<head>
<!-- Include Google Maps Javascript Library -->
<script type="text/javascript" src="http://maps.google.com/maps?file=api&v=1&
key=ABQIAAAA01HpWF7mf2aW91RNaGDc7xTfGML3OZxtDDthfq-
aZ1uFtrk9MRS_VWEizymnfki_h89lqU7A0ts2PA">
</script>

The code in Listing 7.1 relies on an API key that must be retrieved in a previ-
ously executed registration process. The registration site is located at http://
code.google.com/apis/maps/signup.html. The key you receive is valid for a sin-
gle web domain.

Listing 7.2 illustrates the body of a “load” function wherein a hard-coded
Google map is retrieved and applied to a div element in the DOM to show a
simple Google map.

Listing 7.2 JavaScript and DOM Manipulation to Display a Google Map
<script>
 function load()
 {
 if (GBrowserIsCompatible())
 {
 // create map component in div with the id = "map"
 var map = new GMap2(document.getElementById("map"));

 // create map components components
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());

 // create center point when map is displayed
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);

 // create information balloon for center point
 // when map is displayed
 map.openInfoWindow(map.getCenter(),
 "Your Company Here");

 // create clickable point in the same place as
 // the center point, so the user can re-open the
 // info balloon if they close it
 var point = new GLatLng(37.395746, -121.952234);
 map.addOverlay(createMarker(point, 1));
 }
 }

From the Library of John Jeffrey Hanson

http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/signup.html

ptg31978834

BUILDING THE MASHUP PRESENTATION LAYER 243

 function createMarker(point, number)
 {
 var marker = new GMarker(point);

 // create clickable point with title for address
 GEvent.addListener(marker, "click", function()
 {
 marker.openInfoWindowHtml("Your Company Here");
 });
 return marker;
 }

</script>
</head>
<body onload="load()">

The code in Listing 7.2 relies on DOM-manipulation techniques to apply a
Google map to the page. The map is applied and a marker is shown on the map.

Listing 7.3 illustrates the div element that will hold the results from the Google
map retrieval.

Listing 7.3 DIV Element That Will Contain the Google Map
<div id="map" style="border-style:ridge;
 position: absolute;
 left: 220px;
 top: 10px;
 width:400px;
 height:300px">
</div>

For retrieving a Google map using dynamic location information, AJAX
techniques can be used to enable dynamic service requests and to reduce full
page refreshes. In this scenario, location information such as city, state, and zip
code can be passed to a mashup server where the location information is massaged
and passed to the Google Maps API. The latitude and longitude for the given
location are returned to the client and applied to the Google Maps JavaScript
code to present the graphical map.

AJAX techniques rely on the use of the XMLHttpRequest JavaScript object. This
object is used to send HTTP requests from a JavaScript client to a server and to
receive responses from the server synchronously or asynchronously.

Listing 7.4 uses an instance of the XMLHttpRequest object in the ajaxGet method
to pass a standard HTTP GET request to a server. The data retrieved from the
server is in XML format and is accessed via the XMLHttpRequest where it is parsed
and passed to the createMap method where the Google map is retrieved and
applied to the DOM.

From the Library of John Jeffrey Hanson

ptg31978834

244 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

Listing 7.4 Using AJAX Techniques to Dynamically Retrieve a Google Map
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:v="urn:schemas-microsoft-com:vml">
<head>
 <meta http-equiv="content-type"
 content="text/html; charset=UTF-8"/>
 <title>Google Maps</title>

 <script type="text/javascript"
 src="http://maps.google.com/maps?file=api&" +
 "v=1&key=...">
</script>

 <script type="text/javascript">
 //<![CDATA[

 if (GBrowserIsCompatible())
 {
 // ===
 // createMarker function
 // ===
 function createMarker(point, html)
 {
 var marker = new GMarker(point);
 GEvent.addListener(marker, "click", function()
 {
 marker.openInfoWindowHtml(html);
 });
 return marker;
 }

 // ===
 // createMap function
 // ===
 function createMap(latitude, longitude, locationInfo)
 {
 // Display the map, with some controls and
 // set the initial location
 var map = new GMap2(document.getElementById("map"));
 map.addControl(new GLargeMapControl());
 map.addControl(new GMapTypeControl());
 map.setCenter(new GLatLng(latitude, longitude), 8);

 // Set up marker

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PRESENTATION LAYER 245

 var point = new GLatLng(latitude, longitude);
 var marker = createMarker(point, locationInfo)
 map.addOverlay(marker);
 }

 //===
 // initializes the XMLHTTP object
 //===
 function getHTTPObject()
 {
 var xmlhttp = null;
 var success = false;

 // List of MS XMLHTTP versions - newest first
 var MSXML_XMLHTTP_PROGIDS = new Array(
 'MSXML2.XMLHTTP.5.0',
 'MSXML2.XMLHTTP.4.0',
 'MSXML2.XMLHTTP.3.0',
 'MSXML2.XMLHTTP',
 'Microsoft.XMLHTTP'
);

 for (var i = 0;
 i < MSXML_XMLHTTP_PROGIDS.length && !success;
 i++)
 {
 try
 {
 xmlhttp =
 new ActiveXObject(MSXML_XMLHTTP_PROGIDS[i]);
 success = true;
 return xmlhttp;
 }
 catch (e)
 {
 xmlhttp = false;
 }
 }

 if (!xmlhttp && typeof XMLHttpRequest != 'undefined')
 {
 try
 {
 xmlhttp = new XMLHttpRequest();
 }
 catch (e)
 {
 xmlhttp = false;
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

246 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 return xmlhttp;
 }

 ===
 // ajaxGet function
 // ===
 function ajaxGet(apiURL)
 {
 var locationInfo =
 document.getMapForm.locationInfo.value;
 var xmlRequest = getHTTPObject();

 // The false param indicates a synchronous call
 //
 xmlRequest.open("GET",
 apiURL + '?location=' + locationInfo,
 false);
 xmlRequest.send(locationInfo);
 if (xmlRequest.status == 200)
 {
 if (xmlRequest.responseText)
 {
 var xmlDoc = xmlRequest.responseXML;

 var latitude =
 xmlDoc.getElementsByTagName('latitude')[0].
 firstChild.data;
 var longitude =
 xmlDoc.getElementsByTagName('longitude')[0].
 firstChild.data;

 createMap(latitude, longitude, locationInfo);
 }
 }
 else
 {
 alert("ajaxPost failed with status: "
 + xmlRequest.status);
 }
 }
 }
 else
 {
 // display a warning if the browser was not compatible
 alert("Sorry, Google Maps API is incompatible " +
 "with this browser");
 }

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PRESENTATION LAYER 247

 //]]>
 </script>
</head>

The code in Listing 7.4 retrieves latitude and longitude values for a given
location string. The location string is passed to a mashup server where it is
manipulated to pass to the Google Maps API. The Google Maps API returns
the latitude and longitude information, and the mashup server then wraps this
in XML format to be passed back to the AJAX client. The client then uses Java-
Script to parse the XML to retrieve the latitude and longitude values. These val-
ues are passed to the Google Maps APIs to retrieve the actual map, which is
then applied to the DOM of the page. Listing 7.5 illustrates sample code that
can be used to retrieve location information from a user and then passed to the
JavaScript function where it is sent to the server using the XMLHttpRequest object.

Listing 7.5 Form to Receive Location Data from a User to Use to Dynamically
Retrieve a Google Map

<body onunload="GUnload()">

<p/>

<form method="POST"
 action=
 "javascript:ajaxGet('http://example.com/services/getMap')"
 name="getMapForm">
 Location: <input type="text" value="" name="locationInfo"/>
 <input type="submit" value="Get Map" name="submit"/>
</form>

<p/>

<div id="map" style="width: 550px; height: 450px"></div>
</body>
</html>

The code in Listing 7.5 passes the location specified by the user to the Java-
Script ajaxGet method. The location is then passed to the server to retrieve lati-
tude and longitude information. The latitude and longitude are then used by the
client to retrieve a Google map, which is then applied to the “map” DIV element.
In Listing 7.5, the XMLHttpRequest object is called indirectly through the JavaScript
method, ajaxGet, which is invoked via the form’s POST request.

Location data that is passed to the server should be encapsulated in a service
API or resource API that can be reused in a number of different scenarios. The
actual logic for passing the location data to the Google Maps API, parsing the

From the Library of John Jeffrey Hanson

ptg31978834

248 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

latitude and longitude from the response, and for wrapping the latitude and
longitude in XML is shown in Listing 7.6.

Listing 7.6 Service Code for Retrieving Latitude and Longitude Data for a Given
Location String

 public void locationToLatLong(String locationStr,
 LatitudeLongitude latLong)
 throws Exception
 {
 String encodedLocationStr =
 URLEncoder.encode(locationStr, "UTF-8");

 String url = API_URL + "?q=" + encodedLocationStr +
 "&output=xml&key=" + API_KEY;

 // send the actual request using HTTP
 //
 String response = HTTPUtils.sendHTTPRequest(url, null);

 DocumentBuilder docBuilder =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document doc =
 docBuilder.parse(new InputSource(
 new StringReader(response)));
 if (null != doc)
 {
 // latitude/longitude is nested in a coordinates element
 //
 NodeList nodeList =
 doc.getElementsByTagName("coordinates");
 if (null != nodeList && nodeList.getLength() > 0)
 {
 Node locationNode = nodeList.item(0);
 if (null != locationNode)
 {
 String longLatAltStr = locationNode.getTextContent();
 StringTokenizer tokenizer =
 new StringTokenizer(longLatAltStr, ",");
 if (tokenizer.hasMoreTokens())
 {
 latLong.longitude = tokenizer.nextToken();
 latLong.latitude = tokenizer.nextToken();
 return;
 }
 }
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PRESENTATION LAYER 249

 throw new Exception("Invalid data returned " +
 "in locationToLatLong");
 }

As shown in Listing 7.6, latitude and longitude values are returned to the
service caller encapsulated within a LatitudeLongitude class instance. This is a sim-
ple data structure shown in Listing 7.7.

Listing 7.7 Structure for Encapsulating Latitude and Longitude Values
public final class LatitudeLongitude
{
 public String latitude = "";
 public String longitude = "";

 public LatitudeLongitude(String latitude, String longitude)
 {
 this.latitude = latitude;
 this.longitude = longitude;
 }

 public String toString()
 {
 return "Latitude=" + latitude + ", Longitude=" + longitude;
 }
}

Retrieving information from a remote service in Java involves sending an
HTTP GET request using the HttpURLConnection class and parsing the response as
needed. Listing 7.8 illustrates Java code for sending an HTTP GET request.

Listing 7.8 HTTP Request/Response Handling in Java
 public static String sendHTTPRequest(String url)
 throws Exception
 {
 String res = null;

 try
 {
 HttpURLConnection con = null;
 InputStream inStream = null;
 OutputStream outputStream = null;

 try
 {
 con = (HttpURLConnection)new URL(url).openConnection();
 con.setDoInput(true);
 con.setRequestMethod("GET");
 inStream = con.getInputStream();

From the Library of John Jeffrey Hanson

ptg31978834

250 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 res = parseHTTPResponse(inStream);
 }
 finally
 {
 try
 {
 inStream.close();
 outputStream.close();
 con.disconnect();
 }
 catch (Exception e)
 {
 }
 }
 }
 catch (IOException e)
 {
 e.printStackTrace();
}

 return res;
 }

Parsing a simple textual response of an HTTP GET request retrieved using the
HttpURLConnection class can be achieved using an instance of the BufferedReader
class and techniques similar to the code in Listing 7.9.

Listing 7.9 Parsing an HTTP Response in Java
 public static String parseHTTPResponse(InputStream inStream)
 throws IOException
 {
 BufferedReader br = null;
 br = new BufferedReader(new InputStreamReader(inStream,
 "UTF-8"));
 StringBuffer buf = new StringBuffer();
 String line;
 while (null != (line = br.readLine()))
 {
 buf.append(line).append("\n");
 }
 return buf.toString();
 }

In Listing 7.9, response data from an HTTP GET request is retrieved via an
InputStream that is read a line at a time.

The presentation layer for a flexible and powerful mashup application
depends on a modular and flexible infrastructure. The next section discusses

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP INFRASTRUCTURE FOUNDATION 251

how this is achieved using an OSGi-based foundation for a service-oriented
mashup infrastructure.

Building the Mashup Infrastructure Foundation

The foundation for an effective enterprise mashup infrastructure is structured
around a multilayered platform. The layers for the mashup infrastructure are
implemented as interconnected service bundles that are deployed to a kernel
supporting the modular OSGi framework.

The service bundles in this infrastructure are deployed to the OSGi kernel,
which manages service registrations, unregistrations, and lifecycles.

An OSGi infrastructure is ideally suited for a mashup infrastructure, since
mashups are based on principles of modularity and service-orientated concepts.
OSGi technology combines aspects of these principles to define a dynamic ser-
vice deployment framework that is amenable to remote management.

The OSGi Service Platform provides functionality to Java that allows appli-
cations to be constructed from small, reusable, and collaborative components.
These components can be composed and deployed as a service or application.

The service platform exposed by OSGi allows changes to be made to services
and service bundles without requiring restarts. To minimize the coupling, as well
as make these couplings managed, the OSGi technology provides a service-oriented
architecture that enables these components to dynamically discover each other.

For the infrastructure implemented in the following examples, the OSGi
implementation Apache Felix (http://felix.apache.org) is used. Felix can be eas-
ily embedded into other projects and used as a plug-in or dynamic extension
mechanism. It is this capability that is used to construct the service-handling
functionality within the service-oriented kernel of the mashup infrastructure.
With this infrastructure in place, services can be installed, updated, and unin-
stalled as OSGi bundles.

The OSGi kernel operates around the concept of polling for service bundles
that are placed in a specified directory from which they will be deployed. When
a service bundle is deployed, the services contained within will be registered
with the kernel and available for use by service consumers using local (in-VM)
Java method calls.

Starting the OSGi Kernel

The OSGi kernel can be executed as a daemon thread in a stand-alone applica-
tion or from another process. Once started, the kernel polls for new services,
changed services, and removed services from a given directory.

From the Library of John Jeffrey Hanson

http://felix.apache.org

ptg31978834

252 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

The code in Listing 7.10 illustrates the instantiation, initialization, and startup
of an OSGi-based kernel that operates embedded within the context of a servlet-
based mashup infrastructure.

Listing 7.10 Embedded OSGi Kernel
System.setProperty("org.mashups4j.kernel",
 "org.mashups4j.kernel.osgi.OSGiKernel");
String realPath = getServletContext().getRealPath("/");
File servicesLocationDir = new File(realPath, "services");
try
{
 kernel = KernelFactory.getKernel(servicesLocationDir);
 kernel.start();
}
catch (KernelException e)
{
 e.printStackTrace();
 throw new ServletException(e);
}

In Listing 7.10, a kernel is instantiated, initialized, and started. Once the ker-
nel is started, service bundles can be dropped within the directory specified
where they will be automatically deployed to the mashup infrastructure.

OSGi Kernel Initialization

The details for constructing and initializing the OSGi kernel are illustrated in
Listing 7.11.

Listing 7.11 Construction and Initialization of the OSGi Kernel
public class OSGiKernel
 implements BundlePollerListener,
 Kernel
{
 private static final int POLL_MILLIS = 30000;
 private static final String API_PATH_PROP = "API_PATH";

 private KernelActivator m_activator = null;
 private Felix m_felix = null;
 private File m_cachedir = null;
 private BundlePoller m_bundlePoller = null;
 private File m_bundlesLocation = null;
 private HashMap<String, Object> serviceMap =
 new HashMap<String, Object>();

 /**
 * Constructs an instance of this kernel
 */

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP INFRASTRUCTURE FOUNDATION 253

 public OSGiKernel()
 {
 }

 public void initialize()
 throws KernelException
 {
 // Create a temporary bundle cache directory
 try
 {
 m_cachedir =
 File.createTempFile("osgikernel.cache", null);
 }
 catch (IOException e)
 {
 throw new
 KernelException("Unable to create cache directory: "
 + e);
 }

 m_cachedir.delete();

 // Create a case-insensitive configuration property map.
 //
 Map configMap = new StringMap(false);

 // Configure the Felix runtime properties.
 //
 configMap.put(FelixConstants.EMBEDDED_EXECUTION_PROP,
 "true");
 configMap.put(FelixConstants.SERVICE_URLHANDLERS_PROP,
 "false");

 // Add core OSGi packages to be exported from the class path
 // via the system bundle.
 //
 configMap.put(Constants.FRAMEWORK_SYSTEMPACKAGES,
 "org.osgi.framework; version=1.3.0," +
 "org.osgi.service.packageadmin; version=1.2.0," +
 "org.osgi.service.startlevel; version=1.0.0," +
 "org.osgi.service.url; version=1.0.0," +
 "org.osgi.util.tracker; version=1.3.2," +
 "org.xml.sax; version=1.0.0," +
 "sun.misc; verion=1.0.0," +
 "javax.xml.parsers; version=1.0.0," +
 "org.w3c.dom; version=1.0.0");

From the Library of John Jeffrey Hanson

ptg31978834

254 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 // Explicitly specify the directory for caching bundles.
 //
 String cacheDir = m_cachedir.getAbsolutePath();
 configMap.put(BundleCache.CACHE_PROFILE_DIR_PROP,
 cacheDir);
 configMap.put(BundleCache.CACHE_PROFILE_PROP,
 "OSGiMashupKernel");

 try
 {
 // Create kernel activator;
 //
 m_activator = new KernelActivator();
 List list = new ArrayList();
 list.add(m_activator);

 // Now create an instance of the framework with
 // our configuration properties and activator.
 //
 m_felix = new Felix(configMap, list);

 // instantiate the service poller and designate
 // the time between polling cycles
 //
 m_bundlePoller =
 new OSGiBundlePoller(m_bundlesLocation, POLL_MILLIS);
 m_bundlePoller.addBundlePollerListener(this);
 }
 catch (Exception e)
 {
 throw new KernelException("Could not create OSGi kernel: "
 + e);
 }
 }

In Listing 7.11 an instance of the Felix framework is initialized with needed
properties including needed packages and the directory for caching bundles that
are deployed to the kernel. A bundle poller is instantiated that will poll for new
bundles, changed bundles, and removed bundles so that they might be deployed
automatically.

OSGi Kernel Lifecycle

The code in Listing 7.12 illustrates the methods within the OSGi kernel that
start and stop the kernel.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP INFRASTRUCTURE FOUNDATION 255

Listing 7.12 Starting and Stopping the OSGi Kernel
 /**
 * Starts this kernel
 *
 * @throws KernelException
 */
 public void start()
 throws KernelException
 {
 // Start the felix framework when starting the kernel.
 try
 {
 m_felix.start();
 m_bundlePoller.start();
 }
 catch (BundleException e)
 {
 throw new KernelException("Could not start OSGi kernel: "
 + e);
 }
 }

 /**
 * Stops this kernel
 *
 * @throws KernelException
 */
 public void stop()
 throws KernelException
 {
 // Stop the felix framework when stopping the kernel.
 try
 {
 m_bundlePoller.stop();
 m_felix.stop();
 deleteFileOrDir(m_cachedir);
 }
 catch (BundleException e)
 {
 throw new KernelException("Could not stop OSGi kernel: "
 + e);
 }
 }

In Listing 7.12 the Felix framework and bundle poller are started and
stopped when the kernel is started and stopped, respectively.

From the Library of John Jeffrey Hanson

ptg31978834

256 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

Building the Mashup Process Layer

Processes in the mashup infrastructure are embodied for the most part as inde-
pendent services. Each service is defined and deployed within the constructs of
an OSGi bundle. Bundles consist of one or more services that are deployed
automatically to the OSGi kernel.

Services contained within an OSGi bundle are discovered as a bundle is
placed in the path from which the bundle poller reads. As a bundle is discov-
ered, the services contained therein are read and installed in the OSGi kernel.

The following section details the processes that are involved with managing
services contained within bundles and deployed to the OSGi kernel.

OSGi Kernel Service Methods

The code in Listing 7.13 illustrates the methods within the OSGi kernel that
expose functionality for resolving services contained in bundles, discovering the
services available from the kernel, and retrieving an actual service mapped to a
given web application relative path.

Listing 7.13 Service Discovery and Access Methods within the OSGi Kernel
 private void resolveServiceMappings()
 {
 serviceMap = new HashMap<String, Object>();

 // Use the system bundle activator to gain external
 // access to the set of installed bundles.
 //
 Bundle[] bundles = m_activator.getBundles();
 if (null != bundles && bundles.length > 0)
 {
 for (int i = 0; i < bundles.length; i++)
 {
 Bundle bundle = bundles[i];

 // get the ServiceReference list from each bundle
 //
 ServiceReference[] serviceRefs =
 bundle.getRegisteredServices();
 if (null != serviceRefs)
 {
 for (int j = 0; j < serviceRefs.length; j++)
 {
 ServiceReference serviceRef = serviceRefs[j];
 String path =
 (String)serviceRef.getProperty(API_PATH_PROP);

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 257

 if (null != path && path.length() > 0)
 {
 // Retrieve service object for service reference.
 //
 Object service =
 bundle.getBundleContext().
 getService(serviceRef);

 // cache each service with a mapping to its
 // preferred path
 //
 serviceMap.put(path, service);
 }

 // unget the service object to decrement the use count
 //
 bundle.getBundleContext().ungetService(serviceRef);
 }
 }
 }
 }
 }

 /**
 * Retrieves a list of the paths for all installed services
 *
 * @return a list of names of all installed services
 */
 public String[] getInstalledServicePaths()
 {
 resolveServiceMappings();

 String[] paths = new String[serviceMap.keySet().size()];
 serviceMap.keySet().toArray(paths);

 return paths;
 }

 /**
 * Retrieves a service object by path
 *
 * @param servicePath - the path of the service to find
 * @return the service object or null
 */
 public Object getServiceByPath(String servicePath)
 {
 resolveServiceMappings();

From the Library of John Jeffrey Hanson

ptg31978834

258 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 Iterator<String> iter = serviceMap.keySet().iterator();
 while (iter.hasNext())
 {
 String path = iter.next();
 if (servicePath.equalsIgnoreCase(path))
 {
 return serviceMap.get(path);
 }
 }

 return null;
 }

In Listing 7.13 services contained within bundles are added to the kernel’s
cache and exposed to interested service consumers.

Listing 7.14 illustrates the methods within the OSGi kernel that are called by
the bundle poller when bundles are added, changed, or removed. Also illus-
trated are methods for installing the bundles within the Felix framework.

Listing 7.14 Service Discovery and Access Methods within the OSGi Kernel
 /**
 * Installs a bundle in this kernel
 *
 * @param bundleLocation
 * @return Object - the newly install bundle
 * @throws KernelException
 */
 public Object installBundle(String bundleLocation)
 throws KernelException
 {
 String tmpBundleLocation = bundleLocation;
 if (tmpBundleLocation.startsWith("file:/") == false)
 {
 tmpBundleLocation = "file:/" + tmpBundleLocation;
 }
 Bundle installedBundle =
 m_activator.installBundle(tmpBundleLocation);

 return installedBundle;
 }

 /**
 * Uninstalls a bundle from this kernel
 *
 * @param bundleLocation
 * @throws KernelException
 */

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 259

 public void uninstallBundle(String bundleLocation)
 throws KernelException
 {
 String tmpBundleLocation = bundleLocation;
 if (tmpBundleLocation.startsWith("file:/") == false)
 {
 tmpBundleLocation = "file:/" + tmpBundleLocation;
 }
 m_activator.uninstallBundle(tmpBundleLocation);
 }

 /**
 * BundlePoller method
 *
 * @param evt
 */
 public void bundleAdded(BundlePollerEvent evt)
 {
 try
 {
 String bundleLocation = evt.getBundleLocation();
 installBundle(bundleLocation);
 }
 catch (KernelException e)
 {
 e.printStackTrace();
 }
 }

 /**
 * BundlePoller method
 *
 * @param evt
 */
 public void bundleChanged(BundlePollerEvent evt)
 {
 try
 {
 String bundleLocation = evt.getBundleLocation();
 uninstallBundle(bundleLocation);
 installBundle(bundleLocation);
 }
 catch (KernelException e)
 {
 e.printStackTrace();
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

260 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 /**
 * BundlePoller method
 *
 * @param evt
 */
 public void bundleRemoved(BundlePollerEvent evt)
 {
 try
 {
 String bundleLocation = evt.getBundleLocation();
 uninstallBundle(bundleLocation);
 }
 catch (KernelException e)
 {
 e.printStackTrace();
 }
 }
}

In Listing 7.14 added, changed, or removed bundles within the Felix frame-
work are retrieved from a specified file system location.

The OSGi kernel registers itself with the service poller to receive notifications
when service bundles are added, updated, and removed from the services direc-
tory. This allows the kernel to register and unregister bundles with the underly-
ing Felix framework.

Front Controller Servlet and the Service Cache

In the mashup infrastructure described in this chapter, HTTP requests are han-
dled by a front controller servlet where they are dispatched to service APIs and/
or resource requests. A service cache is provided as the intermediary between
the front controller servlet and the OSGi kernel. The service cache retrieves ser-
vices from the kernel and uses them to handle service requests received by the
front controller servlet.

Listing 7.15 illustrates the interactions between the front controller servlet’s
doGet method and the service cache.

Listing 7.15 Interactions between the Front Controller and the Service Cache
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 Object service = null;
 Model model = null;

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 261

 try
 {
 service = ServiceCache.get(getKernel(),
 request.getPathInfo());
 if (service instanceof Service)
 {
 model = ((Service)service).read(request.getPathInfo(),
 request.getParameterMap(),
 getServletContext());
 }
 else
 {
 model = ServiceHelper.dynamicallyInvokeService(service,
 request);
 }
 }
 catch (ServiceException e)
 {
 e.printStackTrace();
 throw new ServletException(e.getMessage());
 }

 serializeModel(response, model);
 }

In Listing 7.15 HTTP GET requests are handled by the front controller’s doGet
method. Services are retrieved from the service cache based on path information
passed in each HTTP GET request. The services are then invoked and the results
are serialized back to the client as HTTP responses. Notice that services that
implement the Service interface are invoked directly. Services that do not imple-
ment the Service interface are invoked dynamically using reflection. This is dis-
cussed later in this chapter.

Listing 7.16 illustrates the process of serializing results returned from service
requests back to the HTTP client.

Listing 7.16 Method for Serializing Service Results Back to an HTTP Client
 private void serializeModel(HttpServletResponse response,
 Model model)
 throws IOException
 {
 response.setContentType(model.getMimeType());
 response.setContentLength(model.getContentLength());

 if (model.canBeStringified())
 {
 response.getWriter().write(model.toString());
 }

From the Library of John Jeffrey Hanson

ptg31978834

262 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 else
 {
 ServletOutputStream outStream =
 response.getOutputStream();
 outStream.write(model.getBytes());
 outStream.flush();
 }
 }

In Listing 7.16 service results are serialized back to the client using either the
response’s PrintWriter object or the response’s OutputStream object depending on
the type of response data.

Listing 7.17 illustrates the service cache implementation.

Listing 7.17 Implementation for the Service Cache
public class ServiceCache
{
 private static ServiceCache instance = null;

 private static ServiceCache getInstance(Kernel kernel)
 {
 if (null == instance)
 {
 instance = new ServiceCache(kernel);
 }

 return instance;
 }

 public static Object get(Kernel kernel, String servicePath)
 throws ServiceException
 {
 return getInstance(kernel).getService(servicePath);
 }

 private Kernel kernel = null;

 public ServiceCache(Kernel kernel)
 {
 this.kernel = kernel;
 }

 private Object getService(String servicePath)
 throws ServiceException
 {
 if (servicePath == null || servicePath.length() <= 0)
 {

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 263

 throw new ServiceException("Service path is empty in "
 + getClass().getName()
 + ".getService()");
 }

 Object service = kernel.getServiceByPath(servicePath);
 if (null != service)
 {
 return service;
 }

 throw new ServiceException("Service [" + servicePath +
 "] not found in "
 + getClass().getName()
 + ".getService()");
 }
}

Notice in Listing 7.17 service instances are retrieved from the kernel by rela-
tive paths. The kernel is the actual cache and the service cache simply acts as a
façade between service consumer and service.

Service Implementations

Each service that is deployed to the mashup infrastructure defines a public
interface and an implementation class. The code shown in Listing 7.18 illus-
trates the interface for the Google Maps service alluded to earlier in this chapter.

Listing 7.18 Interface for the Google Maps Service
public interface GoogleMapsService
{
 /**
 * Converts a location string to latitude/longitude coordinates
 *
 * @param locationStr - the location string to convert
 * @param latLong - structure to hold the latitude/longitude
 * @throws Exception
 **/
 void locationToLatLong(String locationStr,
 LatitudeLongitude latLong)
 throws Exception;
}

The interface in Listing 7.18 defines one method, locationToLatLong, which
should convert a given location string to a latitude and longitude pair.

Listing 7.19 illustrates the Google Maps service implementation.

From the Library of John Jeffrey Hanson

ptg31978834

264 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

Listing 7.19 Implementation for the Google Maps Service
public class GoogleMapsImpl
 implements GoogleMapsService
{
 private static final String API_KEY = "...";
 private static final String API_URL =
 "http://maps.google.com/maps/geo";

 /**
 * Converts a . string to latitude/longitude coordinates.
 * The response is in the following format:
 * <pre>
 * <?xml version="1.0" encoding="UTF-8"?>
 * <kml xmlns="http://earth.google.com/kml/2.0">
 * <Response>
 * <name>Salt Lake City, UT</name>
 * <Status>
 * <code>200</code>
 * <request>geocode</request>
 * </Status>
 * <Placemark id="p1">
 * ...
 * <Point>
 * <coordinates>-111.888189,40.771592,0</coordinates>
 * </Point>
 * </Placemark>
 * </Response>
 * </kml>
 * </pre>
 *
 * @param locationStr - the location string to convert
 * @param latLong - holds the latitude and longitude
 * @throws Exception
 */
 public void locationToLatLong(String locationStr,
 LatitudeLongitude latLong)
 throws Exception
 {
 String encodedLocationStr =
 URLEncoder.encode(locationStr, "UTF-8");
 String url = API_URL + "?q=" +
 encodedLocationStr + "&output=xml&key=" +
 API_KEY;
 String response = HTTPUtils.sendHTTPRequest(url, null);

 DocumentBuilder docBuilder =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 265

 Document doc =
 docBuilder.parse(new InputSource(
 new StringReader(response)));
 if (null != doc)
 {
 NodeList nodeList =
 doc.getElementsByTagName("coordinates");
 if (null != nodeList && nodeList.getLength() > 0)
 {
 Node locationNode = nodeList.item(0);
 if (null != locationNode)
 {
 String longLatAltStr = locationNode.getTextContent();
 StringTokenizer tokenizer =
 new StringTokenizer(longLatAltStr, ",");
 if (tokenizer.hasMoreTokens())
 {
 latLong.longitude = tokenizer.nextToken();
 latLong.latitude = tokenizer.nextToken();
 return;
 }
 }
 }
 }

 throw new Exception("Invalid data returned.");
 }

 public Object execute(Properties props)
 {
 System.out.println(getClass().getName() + ".execute()");

 Object locationObj = props.get("location");
 LatitudeLongitude latLong = new LatitudeLongitude("", "");

 try
 {
 locationToLatLong((String)locationObj, latLong);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 return latLong;
 }
}

From the Library of John Jeffrey Hanson

ptg31978834

266 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

Notice in Listing 7.19 that an execute method is provided as a generic invoca-
tion entry point. This enables the service cache to invoke the functionality of
each service in a generic manner. This process is discussed later.

To further illustrate the concepts surrounding service deployment within the
OSGi bundle framework, another service is illustrated in Listing 7.20. This ser-
vice retrieves location information about a given user profile exposed by the
Twitter microfeed web site.

Listing 7.20 Interface of a Twitter Location Retrieval Service
public interface TwitterService
{
 /**
 * Retrieves the location of a given user.
 *
 * @param targetUserID - the ID of the user
 * @throws Exception
 **/
 String getUserLocation(String targetUserID)
 throws Exception;
}

The interface in Listing 7.20 defines one method, getUserLocation, which should
retrieve the location information for a given user of the Twitter microfeed service.

Listing 7.21 illustrates the Twitter location-retrieval service implementation.

Listing 7.21 Implementation of a Twitter Location Retrieval Service
public class TwitterImpl
 implements TwitterService
{
 private static final String API_URL =
 "http://twitter.com/users/show/";

 /**
 * Retrieves the location of a given user.
 *
 * @param targetUserID - the ID of the user
 * @throws Exception
 */
 public String getUserLocation(String targetUserID)
 throws Exception
 {
 String response =
 HTTPUtils.sendHTTPRequest(API_URL +
 targetUserID + ".xml", null);
 DocumentBuilder docBuilder =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document doc =

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 267

 docBuilder.parse(new InputSource(
 new StringReader(response)));
 if (null != doc)
 {
 NodeList nodeList = doc.getElementsByTagName("location");
 if (null != nodeList && nodeList.getLength() > 0)
 {
 Node locationNode = nodeList.item(0);
 if (null != locationNode)
 {
 return locationNode.getTextContent();
 }
 }
 }

 throw new Exception("Invalid HTTP response " +
 "content encountered");
 }

 public Object execute(Properties props)
 {
 Object targetUserIDObj = props.get("targetUserID");
 String retStr = "";
 try
 {
 retStr = getUserLocation((String)targetUserIDObj);
 }
 catch(Throwable t)
 {
 t.printStackTrace();
 }

 return retStr;
 }
}

As with the Google Maps service, Listing 7.21 illustrates an execute method
provided as a generic invocation entry point.

Each service to be deployed to the OSGi-based mashup infrastructure is reg-
istered using an implementation of the BundleActivator interface. This implemen-
tation class is designated in the .jar file and contains the resources and classes that
embody a given bundle. The ServiceProvider class shown in Listing 7.22 illus-
trates the implementation details for the Google Maps service-provider class.

Listing 7.22 Implementation of the BundleActivator Interface
public class ServiceProvider
 implements BundleActivator,
 ServiceListener

From the Library of John Jeffrey Hanson

ptg31978834

268 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

{
 /**
 * Implements BundleActivator.start().
 * Registers a number of services using the bundle context;
 * Attaches properties to the services that can be queried
 * when performing a service look-up.
 *
 * @param context the framework context for the bundle.
 */
 public void start(BundleContext context)
 {
 System.out.println(getClass().getName() + ".start()");
 context.addServiceListener(this);

 Properties twitterProps = new Properties();

 // specify the relative web app path for this service
 //
 twitterProps.put("API_PATH", "/twitter");

 // register the Twitter service
 //
 context.registerService(TwitterService.class.getName(),
 new TwitterImpl(), twitterProps);

 Properties googleMapsProps = new Properties();

 // specify the relative web app path for this service
 //
 googleMapsProps.put("API_PATH", "/googlemaps");

 // register the Google Maps service
 //
 context.registerService(GoogleMapsService.class.getName(),
 new GoogleMapsImpl(), googleMapsProps);

 System.out.println(getClass().getName() + " started");
 }

 /**
 * Implements BundleActivator.stop().
 *
 * @param context the framework context for the bundle.
 */
 public void stop(BundleContext context)
 {
 System.out.println(getClass().getName() + ".stop()");
 context.removeServiceListener(this);

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 269

 System.out.println(getClass().getName() + " stopped");
 }

 public void serviceChanged(ServiceEvent event)
 {
 String[] objectClass =
 (String[])event.getServiceReference().
 getProperty("objectClass");

 if (event.getType() == ServiceEvent.REGISTERED)
 {
 System.out.println(getClass().getName() +
 ": Service of type " +
 objectClass[0] + " registered.");
 }
 else if (event.getType() == ServiceEvent.UNREGISTERING)
 {
 System.out.println(getClass().getName() +
 ": Service of type " +
 objectClass[0] + " unregistered.");
 }
 else if (event.getType() == ServiceEvent.MODIFIED)
 {
 System.out.println(getClass().getName() +
 ": Service of type " +
 objectClass[0] + " modified.");
 }
 else
 {
 System.out.println(getClass().getName() +
 ": Service of unknown type " +
 event.getType());
 }
 }
}

In Listing 7.22 the registerService method on the BundleContext instance is called
to register the Twitter service and the Google Maps service. The implementa-
tion of the BundleActivator interface must be designated within the bundle itself
for the OSGi framework to know which class will register the bundle’s services.
This leads us to the discussion of compiling and packaging the service bundle.

Bundling Services

Service bundles are compiled and packaged using the Maven build tool and a
plug-in specifically designed for OSGi bundles. The Maven POM file is shown
in Listing 7.23.

From the Library of John Jeffrey Hanson

ptg31978834

270 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

Listing 7.23 Maven POM File for Compiling and Packaging a Bundle
<project>
 <modelVersion>4.0.0</modelVersion>
 <packaging>bundle</packaging>
 <name>A bunch of services</name>
 <description>Miscellaneous services.</description>
 <groupId>org.mashups4j</groupId>
 <artifactId>MiscServices</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>org.apache.felix</groupId>
 <artifactId>org.apache.felix.main</artifactId>
 <version>1.0.3</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>1.4.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Import-Package>
 org.mashups4j.services.*,
 javax.xml.*,
 org.xml.sax.*,
 org.w3c.dom.*,
 org.osgi.framework,
 *
 </Import-Package>

 <Export-Package>
 org.mashups4j.services.utils.*,
 org.mashups4j.services.registry.*,
 org.mashups4j.services.google.*,
 org.mashups4j.services.twitter.*
 </Export-Package>

 <Bundle-Activator>
 org.mashups4j.services.registry.ServiceProvider
 </Bundle-Activator>
 <Bundle-Vendor>Mashups4J</Bundle-Vendor>
 </instructions>

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 271

 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Notice in Listing 7.23 how a plug-in is specified with an artifactID of maven-
bundle-plugin. This plug-in is where the details of the bundle are specified. These
details include packages to be imported by the bundle, packages to be exported by
the bundle, and the BundleActivator implementation. In this specific case, the classes
contained within the org.mashups4j.services.google and org.mashups4j.services.twitter
packages are exported and the org.mashups4j.services.registry.ServiceProvider class
is designated as the BundleActivator implementation.

When the POM file shown in Listing 7.23 is processed by the Maven build
tool, a .jar file is produced containing all the classes for the bundle along with a
manifest declaring information used by the OSGi framework when the bundle
is deployed. This manifest information includes some of the same information
shown in the POM, such as imported and exported bundle information and the
BundleActivator implementation. Also included in the manifest are the bundle’s
symbolic name and the bundle version. The .jar file can then be placed in the
directory polled by the bundle poller described previously where the .jar file
will be loaded and its contained services deployed to the OSGi framework and,
therefore, to the mashup infrastructure.

Dynamically Invoking Service Logic

As discussed previously, an execute method is provided by each service to act as
a generic invocation entry point. This enables the service cache to invoke the
functionality of each service in a generic manner. This process is illustrated in
Listing 7.24.

Listing 7.24 Helper Class for Dynamically Invoking Service Calls
public class ServiceHelper
{
 public static Model dynamicallyInvokeService(Object service,
 HttpServletRequest request)
 {
 Properties paramProps = new Properties();
 Enumeration enumer = request.getParameterNames();
 while (enumer.hasMoreElements())
 {
 String paramName = (String)enumer.nextElement();
 paramProps.put(paramName,
 request.getParameter(paramName));
 }

From the Library of John Jeffrey Hanson

ptg31978834

272 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 return dynamicallyInvokeService(service, paramProps);
 }

 public static Model dynamicallyInvokeService(Object service,
 final Properties props)
 {
 // we are looking for this method:
 // public Object execute(Properties props)

 Method method = null;

 try
 {
 method = service.getClass().getMethod("execute",
 Properties.class);

 try
 {
 final Object retObj = method.invoke(service, props);
 Model model = null;
 if (retObj instanceof Model)
 {
 model = (Model)retObj;
 }
 else
 {
 model = new Model()
 {
 public Object contents = retObj;

 public String getMimeType()
 {
 String outputtype =
 (String)props.get("outputtype");
 if (outputtype != null)
 {
 if (outputtype.equalsIgnoreCase("xml"))
 {
 return "application/xml";
 }
 }

 return "text/plain";
 }

 public int getContentLength()
 {
 return contents.toString().length();
 }

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 273

 public boolean canBeStringified()
 {
 return true;
 }

 public byte[] getBytes()
 {
 return contents.toString().getBytes();
 }

 public void setContents(Object contents)
 {
 this.contents = contents;
 }

 public String toString()
 {
 return contents.toString();
 }
 };
 }

 return model;
 }
 catch (IllegalAccessException e)
 {
 e.printStackTrace();
 }
 catch (InvocationTargetException e)
 {
 e.printStackTrace();
 }
 }
 catch (NoSuchMethodException e)
 {
 e.printStackTrace();
 }

 return null;
 }
}

Listing 7.24 illustrates two dynamicallyInvokeService methods—a method that
takes a service object and an HttpServletRequest instance. This method simply
redirects to a method that takes a service object and a list of properties. The lat-
ter method uses reflection to try to locate an execute method on the service
object that takes a list of properties. If this method is found it is invoked and

From the Library of John Jeffrey Hanson

ptg31978834

274 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

the list of properties is passed to it. The result returned from the execute method
is wrapped in a Model object and passed back to the caller.

The properties passed to the dynamicallyInvokeService are queried to see if an
outputtype property is defined. If it is defined and XML is specified as the output
type, the Model object is configured as an XML-based model. The caller can then
serialize it as XML, and an AJAX client can parse it using JavaScript XML
parsing techniques.

An instance of the OSGiKernel will dispatch service invocations through ser-
vices registered with the kernel. The kernel relies on a bundle polling mecha-
nism that monitors a given directory. The bundle poller registers new bundles
and contained services as they are found, unregisters bundles and services as
they are removed, and updates existing bundles and services as they are
changed.

The Bundle Poller

The bundle polling process allows hot deployment of bundles and the services
contained within a bundle at runtime without stopping and restarting the ker-
nel.

Listing 7.25 illustrates the polling process of the bundle poller.

Listing 7.25 Bundle Polling Method
 private void poll()
 {
 File[] files = m_bundlesLocation.listFiles();
 if (m_cachedFiles == null)
 {
 // add all new
 if (null != files && files.length > 0)
 {
 m_cachedFiles = new ArrayList<CachedFile>();
 m_cachedFiles.addAll(fileArrayToCachedList(files));
 fireBundleAddedForAll();
 }
 }
 else if (files.length <= 0)
 {
 // remove all
 fireBundleRemovedForAll();
 }
 else
 {
 // pick and choose
 List<File> newFileList = Arrays.asList(files);

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 275

 // find deleted files
 ArrayList<File> deletedFiles = new ArrayList<File>();
 Iterator<CachedFile> cachedFileIter =
 m_cachedFiles.iterator();
 while (cachedFileIter.hasNext())
 {
 CachedFile cachedFile = cachedFileIter.next();
 if (null == isFileInList(cachedFile.m_file, newFileList))
 {
 deletedFiles.add(cachedFile.m_file);
 }
 }

 // Remove deleted files from cache
 Iterator<File> deletedFileIter = deletedFiles.iterator();
 while (deletedFileIter.hasNext())
 {
 CachedFile cachedFile = cachedFileIter.next();
 removeFileFromCache(cachedFile.m_file);
 }

 // remove deleted files from new list
 newFileList.removeAll(deletedFiles);

 // find new and changed files
 Iterator<File> newFileIter = newFileList.iterator();
 while (newFileIter.hasNext())
 {
 File newFile = newFileIter.next();
 CachedFile cachedFile =
 isCachedFileInList(newFile, m_cachedFiles);
 if (null != cachedFile)
 {
 // test modified date
 if (newFile.lastModified() >
 cachedFile.m_lastModified)
 {
 fireBundleChanged(newFile);
 }
 }
 else
 {
 m_cachedFiles.add(new CachedFile(newFile));
 fireBundleAdded(newFile);
 }
 }
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

276 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

As a bundle is discovered to be added, changed, or removed from the ser-
vices directory, the bundle poller will add it to its private cache and fire an event
to all registered listeners conveying information about the bundle.

Event-Firing Mechanisms
The fireBundleRemoved method, the fireBundleAdded method, and the fireBundleChanged
method iterate through the list of listeners and invoke the appropriate method
on each listener, passing a BundlePollerEvent object that contains information
about the event and the bundle.

The methods in Listing 7.26 illustrate the implementation details for firing
events from the bundle poller as bundles are added, removed, and modified.

Listing 7.26 Event Firing Methods
 private void fireBundleRemoved(File aFile)
 {
 BundlePollerEvent evt =
 new BundlePollerEvent(this, aFile.getAbsolutePath());
 Iterator<BundlePollerListener> listenerIter =
 m_listeners.iterator();
 while (listenerIter.hasNext())
 {
 BundlePollerListener listener = listenerIter.next();
 listener.bundleRemoved(evt);
 }
 }

 private void fireBundleAdded(File aFile)
 {
 BundlePollerEvent evt =
 new BundlePollerEvent(this, aFile.getAbsolutePath());
 Iterator<BundlePollerListener> listenerIter =
 m_listeners.iterator();
 while (listenerIter.hasNext())
 {
 BundlePollerListener listener = listenerIter.next();
 listener.bundleAdded(evt);
 }
 }

 private void fireBundleChanged(File aFile)
 {
 BundlePollerEvent evt =
 new BundlePollerEvent(this, aFile.getAbsolutePath());
 Iterator<BundlePollerListener> listenerIter =
 m_listeners.iterator();
 while (listenerIter.hasNext())

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP PROCESS LAYER 277

 {
 BundlePollerListener listener = listenerIter.next();
 listener.bundleChanged(evt);
 }
 }

The lifecycle methods, start and stop, on the ServicePoller object start and
stop the necessary tasks and processes that a ServicePoller instance needs to
effectively load and unload services as they are added and removed from the
services directory.

Lifecycle Methods
The start method ensures that the services directory is created and then starts a
timer that runs at intervals specified by the host component of the ServicePoller
instance. The task associated with the timer is responsible for instigating the
polling process that will check the services directory for service changes.

The methods in Listing 7.27 illustrate the implementation details of the life-
cycle methods for the service poller.

Listing 7.27 Bundle Poller Lifecycle Methods
 public void start()
 throws KernelException
 {
 if (m_bundlesLocation.exists() == false)
 {
 m_bundlesLocation.mkdir();
 }
 else if (!m_bundlesLocation.isDirectory())
 {
 throw new KernelException(getClass().getName()
 + ".start() invalid bundles location: "
 + m_bundlesLocation.getAbsolutePath());
 }

 TimerTask timerTask = new TimerTask()
 {
 public void run()
 {
 poll();
 }
 };
 m_timer = new Timer();
 m_timer.scheduleAtFixedRate(timerTask, 0, m_pollMillis);
 }

 public void stop()
 throws KernelException

From the Library of John Jeffrey Hanson

ptg31978834

278 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 {
 m_timer.cancel();
 m_timer = null;
 }

Listing 7.27 illustrates how a Timer instance is used to schedule service polling
at regular intervals.

Event Listener Support Methods
The addBundlePollerListener method and the removeBundlePollerListener method are
responsible for respectively adding and removing listeners to the BundlePoller
instance.

Listing 7.28 illustrates the implementation details of the event listener meth-
ods for the bundle poller.

Listing 7.28 Bundle Poller Event Listener Methods
 public void
 addBundlePollerListener(BundlePollerListener listener)
 {
 m_listeners.add(listener);
 }

 public void
 removeBundlePollerListener(BundlePollerListener listener)
 {
 m_listeners.remove(listener);
 }

Once a listener is added to the bundle poller the listener will receive notifica-
tions as bundles are added, removed, and modified.

Processes and UI artifacts within a mashup infrastructure depend on data
from many different sources. Concepts and implementation techniques for a
generic mashup data layer are discussed in the following sections.

Building the Mashup Data Layer

UI artifacts and processes for a mashup infrastructure rely on content and data
from multiple sources. Content and data are modeled as resources. Resources
are retrieved using a REST-based invocation model; in other words, resources
are created, retrieved, updated, and deleted using a simple syntax that relies on
URIs to define the location of each resource.

This section defines a generic mashup data layer that can access data from
multiple sources using a REST-based invocation model. The resources can then
be serialized to a mashup application or page in different semantic formats.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP DATA LAYER 279

The following section discusses the main access point for resources—the
resource cache.

The Resource Cache

Resources are retrieved from a resource cache using path information supplied
by the resource consumer. In the cache defined here, simple file system paths are
used to access resources; however, this can be easily enhanced to support data-
base paths, remote service API paths, and others.

Listing 7.29 illustrates the public interface for the resource cache.

Listing 7.29 Resource Cache Interface Definition
public interface ResourceCache
{
 void createResource(String resourcePath,
 Object context,
 Object data)
 throws ResourceException;

 Resource readResource(String resourcePath,
 Object context,
 boolean getCurrentCopy)
 throws ResourceException;

 void updateResource(String resourcePath,
 Object context,
 Object data)
 throws ResourceException;

 void deleteResource(String resourcePath,
 Object context)
 throws ResourceException;

 long getResourceLastModified(String resourcePath,
 Object context)
 throws ResourceException;
}

Notice how the methods defined by the resource cache interface follow the
simple CRUD (create, read, update, and delete) pattern.

Listing 7.30 illustrates the static/global fields and methods exposed by the
resource cache.

Listing 7.30 Resource Cache Static/Global Fields and Methods
public class FileSystemResourceCache
{
 private static final String RESOURCE_PREFIX =
 "WEB-INF/classes";

From the Library of John Jeffrey Hanson

ptg31978834

280 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 private static ResourceCache instance = null;

 // ===
 // public static methods
 // ===

 public static ResourceCache getInstance(boolean saveInstances)
 {
 if (null == instance)
 {
 instance = new FileSystemResourceCache(saveInstances);
 }

 return instance;
 }

Listing 7.30 illustrates one main global entry point into the resource cache—
the getInstance method. The getInstance method creates the instance of the
resource cache, if needed, and returns it to the caller. A boolean parameter
passed to the method specifies whether to save instances in the cache as they are
retrieved. If this parameter is false, the resource caches acts simply as a façade
between the resource consumer and the resource.

Listing 7.31 illustrates the instance fields and methods exposed by an
instance of the resource cache.

Listing 7.31 Resource Cache Instance Fields and Methods
 // ===
 // member fields
 // ===

 private boolean saveInstances = false;
 private HashMap<String, Resource> resources =
 new HashMap<String, Resource>();

 // ===
 // constructors
 // ===

 public FileSystemResourceCache(boolean saveInstances)
 {
 this.saveInstances = saveInstances;
 }

 // ===
 // non-public instance methods
 // ===

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP DATA LAYER 281

 protected String
 filePathFromRequest(ServletContext servletContext,
 String resourcePath)
 {
 return servletContext.getRealPath("") + resourcePath;
 }

 protected void writeToFile(HttpServletRequest request,
 File file,
 boolean append)
 throws IOException
 {
 String value = request.getParameter("value");
 if (null == value)
 {
 throw new IOException("Parameter 'value' not found.");
 }

 FileOutputStream outStream =
 new FileOutputStream(file, append);
 outStream.write(value.getBytes(), 0,
 value.getBytes().length);
 outStream.flush();
 outStream.close();
 }

 // ===
 // public instance methods
 // ===

 /**
 * Creates a resource
 *
 * @param resourcePath
 * @param context
 * @param data
 * @throws ResourceException
 */
 public void createResource(String resourcePath,
 Object context,
 Object data)
 throws ResourceException
 {
 String filePath =
 filePathFromRequest((ServletContext)context, "/"
 + RESOURCE_PREFIX
 + resourcePath);
 File file = new File(filePath);

From the Library of John Jeffrey Hanson

ptg31978834

282 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 try
 {
 boolean append = false;
 writeToFile((HttpServletRequest)data, file, append);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 throw new ResourceException(e);
 }
 }

 /**
 * Retrieves a resource
 *
 * @param resourcePath
 * @param context
 * @param getCurrentCopy
 * @return the resource
 * @throws ResourceException
 */
 public Resource readResource(String resourcePath,
 Object context,
 boolean getCurrentCopy)
 throws ResourceException
 {
 if (resourcePath == null || resourcePath.length() == 0)
 {
 throw new ResourceException("Resource path is empty in "
 + getClass().getName()
 + ".readResource()");
 }

 String filePath =
 filePathFromRequest((ServletContext)context,
 resourcePath);

 // look for cached copy, if possible
 //
 if (!getCurrentCopy)
 {
 Resource resource = resources.get(filePath);
 if (null != resource)
 {
 return resource;
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP DATA LAYER 283

 // get the contents of the resource file
 //
 InputStream inStream =
 ((ServletContext)context).
 getResourceAsStream(RESOURCE_PREFIX
 + resourcePath);
 if (null == inStream)
 {
 throw new ResourceException("Resource [" + resourcePath
 + "] not found in "
 + getClass().getName()
 + ".readResource()");
 }

 ByteArrayOutputStream outStream =
 new ByteArrayOutputStream();
 try
 {
 byte[] bytes = new byte[4096];
 int bytesRead = 0;
 while ((bytesRead = inStream.read(bytes)) > 0)
 {
 outStream.write(bytes, 0, bytesRead);
 }
 }
 catch (IOException e)
 {
 throw new ResourceException("Error retrieving resource ["
 + resourcePath + "] in "
 + getClass().getName()
 + ".readResource()");
 }

 byte[] resourceBytes = outStream.toByteArray();

 Resource resource =
 new SimpleResource(resourcePath, resourceBytes);

 // store copy in cache
 //
 if (saveInstances == true)
 {
 resources.put(filePath, resource);
 }

 return resource;
 }

From the Library of John Jeffrey Hanson

ptg31978834

284 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 /**
 * Modifies a resource
 *
 * @param resourcePath
 * @param context
 * @param data
 * @throws ResourceException
 */
 public void updateResource(String resourcePath,
 Object context,
 Object data)
 throws ResourceException
 {
 String filePath =
 filePathFromRequest((ServletContext)context, "/"
 + RESOURCE_PREFIX + resourcePath);
 File file = new File(filePath);

 try
 {
 boolean append = (file.exists() ? true : false);
 writeToFile((HttpServletRequest)data, file, append);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 throw new ResourceException(e);
 }
 }

 /**
 * Deletes a resource
 *
 * @param resourcePath
 * @param context
 * @throws ResourceException
 */
 public void deleteResource(String resourcePath,
 Object context)
 throws ResourceException
 {
 String filePath =
 filePathFromRequest((ServletContext)context, "/"
 + RESOURCE_PREFIX + resourcePath);
 File file = new File(filePath);

 if (file.exists())
 {

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP DATA LAYER 285

 if (file.delete() == false)
 {
 throw new ResourceException("Error deleting resource ["
 + filePath + "]");
 }
 }
 }

 /**
 * Retrieves the last-modified date for a resource
 *
 * @param resourcePath
 * @param context
 * @return the last modified date of the resource
 * @throws ResourceException
 */
 public long getResourceLastModified(String resourcePath,
 Object context)
 throws ResourceException
 {
 if (resourcePath == null || resourcePath.length() == 0)
 {
 throw new ResourceException("Resource path is empty in "
 + getClass().getName()
 + ".getResourceLastModified()");
 }

 // check that the resource exists
 //
 URL resourceURL = null;

 try
 {
 resourceURL =
 ((ServletContext)context).getResource(resourcePath);
 }
 catch (MalformedURLException e)
 {
 throw new ResourceException(e);
 }

 if (resourceURL == null)
 {
 throw new ResourceException("Resource [" + resourcePath
 + "] not found in "
 + getClass().getName()
 + ".getResourceLastModified()");
 }

From the Library of John Jeffrey Hanson

ptg31978834

286 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 long lastModified = 0;

 try
 {
 URLConnection urlConn = resourceURL.openConnection();
 lastModified = urlConn.getLastModified();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }

 return lastModified;
 }
}

Listing 7.31 illustrates utility methods for manipulating the resources on disk
and for converting a web context and resource path to a file system path.
Important to note is the implementation of the CRUD interface methods.

Resource consumers can use the file system resource cache to store and
retrieve resources from a file system. In the following section a resource con-
sumer that also acts as an HTTP request adapter is shown.

The Resource Cache HTTP Adapter

Requests received by a web application are handled by the ResourceAdapter serv-
let. This servlet converts HTTP requests to resource manipulation (create, read,
update, and delete) requests and dispatches the converted requests to the
resource cache.

Listing 7.32 illustrates the implementation of the ResourceAdapter servlet.

Listing 7.32 Resource Adapter Implementation
public class ResourceAdapter
 extends HttpServlet
{
 protected void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 try
 {
 Resource resource =
 FileSystemResourceCache.getInstance(true).
 readResource(req.getPathInfo(),
 getServletContext(),
 false);

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP DATA LAYER 287

 serializeResource(res, resource);
 }
 catch (ResourceException e)
 {
 e.printStackTrace();
 throw new ServletException(e);
 }
 }

 protected void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 try
 {
 FileSystemResourceCache.getInstance(true).
 updateResource(req.getPathInfo(),
 getServletContext(),
 req);
 PrintWriter out = res.getWriter();
 out.println("success");
 }
 catch (ResourceException e)
 {
 e.printStackTrace();
 throw new ServletException(e);
 }
 }

 protected void doPut(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 try
 {
 FileSystemResourceCache.getInstance(true).
 createResource(req.getPathInfo(),
 getServletContext(),
 req);
 PrintWriter out = res.getWriter();
 out.println("success");
 }
 catch (ResourceException e)
 {
 e.printStackTrace();
 throw new ServletException(e);
 }
 }

From the Library of John Jeffrey Hanson

ptg31978834

288 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 protected void doDelete(HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 try
 {
 FileSystemResourceCache.getInstance(true).
 deleteResource(req.getPathInfo(),
 getServletContext());
 PrintWriter out = res.getWriter();
 out.println("success");
 }
 catch (ResourceException e)
 {
 e.printStackTrace();
 throw new ServletException(e);
 }
 }

 protected long getLastModified(HttpServletRequest req)
 {
 try
 {
 return FileSystemResourceCache.getInstance(true).
 getResourceLastModified(req.getPathInfo()
 getServletContext());
 }
 catch (ResourceException e)
 {
 e.printStackTrace();
 }

 return 0;
 }

Notice in Listing 7.32 how the FileSystemResourceCache is used as the access
point to resource. A complete solution would offer a factory or configuration
model where the type of cache (file system, database, and so on) could be speci-
fied dynamically.

In Listing 7.33 a method of the ResourceAdapter class is shown that serializes a
given Resource instance to the servlet output stream.

Listing 7.33 Resource Serialization Method
 private void serializeResource(HttpServletResponse response,
 Resource resource)
 throws IOException
 {

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING THE MASHUP DATA LAYER 289

 response.setContentType(resource.getMimeType());
 response.setContentLength(resource.getContentLength());

 if (resource.canBeStringified())
 {
 response.getWriter().write(resource.toString());
 }
 else
 {
 ServletOutputStream outStream = response.getOutputStream();
 outStream.write(resource.getBytes());
 outStream.flush();
 }
 }
}

The method in Listing 7.33 uses information supplied by the Resource

instance to specify the content type and content length of the HTTP response.
The contents of the Resource instance are then serialized out to the HTTP
response as either a string or a stream of bytes.

Listing 7.34 illustrates a simple implementation of the Resource interface. This
implementation supports resources that can be represented as a stream of bytes.

Listing 7.34 Simple Resource Implementation
public class SimpleResource
 implements Resource
{
 private String resourceFileName = "";
 private byte[] resourceBytes = null;

 public SimpleResource(String resourceFileName,
 byte[] resourceBytes)
 {
 this.resourceFileName = resourceFileName;
 this.resourceBytes = resourceBytes;
 }

 public String getMimeType()
 {
 if (resourceFileName.toLowerCase().endsWith(".txt"))
 {
 return("text/plain");
 }
 else if (resourceFileName.toLowerCase().endsWith(".xml"))
 {
 return("text/xml");
 }

From the Library of John Jeffrey Hanson

ptg31978834

290 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

 else if (resourceFileName.toLowerCase().endsWith(".html"))
 {
 return("text/html");
 }
 else if (resourceFileName.toLowerCase().endsWith(".rss"))
 {
 return("application/rss+xml");
 }
 else if (resourceFileName.toLowerCase().endsWith(".rdf"))
 {
 return("application/rdf+xml");
 }
 else if (resourceFileName.toLowerCase().endsWith(".atom"))
 {
 return("application/atom+xml");
 }
 else if (resourceFileName.toLowerCase().endsWith(".xls"))
 {
 return("application/vnd.ms-excel");
 }
 else if (resourceFileName.toLowerCase().endsWith(".doc"))
 {
 return("application/msword");
 }

 return "text/plain";
 }

 public int getContentLength()
 {
 System.out.println(getClass().getName() +
 ".getContentLength returning: " +
 resourceBytes.length);
 return resourceBytes.length;
 }

 public byte[] getBytes()
 {
 return resourceBytes;
 }

 public boolean canBeStringified()
 {
 if (resourceFileName.toLowerCase().endsWith(".txt"))
 {
 return true;
 }
 else if (resourceFileName.toLowerCase().endsWith(".xml"))
 {

From the Library of John Jeffrey Hanson

ptg31978834

SUMMARY 291

 return true;
 }
 else if (resourceFileName.toLowerCase().endsWith(".html"))
 {
 return true;
 }
 else if (resourceFileName.toLowerCase().endsWith(".rss"))
 {
 return true;
 }
 else if (resourceFileName.toLowerCase().endsWith(".rdf"))
 {
 return true;
 }
 else if (resourceFileName.toLowerCase().endsWith(".atom"))
 {
 return true;
 }

 return false;
 }

 public String toString()
 {
 return new String(resourceBytes);
 }
}

The SimpleResource class shown in Listing 7.34 uses the file extension to deter-
mine the MIME type for the resource. In a more robust implementation the
MIME type would be specified by the object that creates the resource to ensure
accuracy and flexibility.

Summary

A mashup infrastructure must expose and support programming entities that
can be combined in a mashup. The infrastructure must also address the corre-
sponding issues and solutions for each type of entity. This is modeled as three
high-level categories of items—user interface artifacts (presentation), data
(resources), and/or application functionality (processes). UI artifacts include
such entities as HTML snippets, on-demand JavaScript, web service APIs, RSS
feeds, and/or other sundry pieces of data. The implementation style, techniques,
and technologies used for each category of mashup items present certain con-
straints and subtleties.

From the Library of John Jeffrey Hanson

ptg31978834

292 CHAPTER 7 STEP-BY-STEP: A TOUR THROUGH A SAMPLE MASHUP

Mashup infrastructures provide components, services, and UI artifacts for
building mashups from the point of view of the presentation layer, process
layer, and data layer. This chapter showed some techniques for achieving a sim-
ple implementation of this model. I also discussed the concepts presented thus
far as a step-by-step tour through the technologies and implementations for
each high-level mashup category.

In the next chapter I discuss some real-life scenarios involving a variety of
mashup tools and commercial mashups, focusing on the different implementa-
tion considerations and challenges for each one.

From the Library of John Jeffrey Hanson

ptg31978834

293

Chapter 8

Commercial Mashups and
Tools for Building Mashups

Enterprise mashups have entered many different vertical domain applications
and services. This includes, for example, reports that employ mashups of web
traffic, maps, and other analytical data; mashups that give employees access to
repair, order, and service history for aircraft engine parts, mashups that consoli-
date data from multiple sources; and mashups that integrate client data with
email content to provide alerts containing reports of property matches.

In this chapter I discuss some real-life scenarios involving a variety of
mashup tools and commercial mashups, focusing on the different implementa-
tion considerations and challenges for each one.

Tools for Building Mashups

Mashup tools and environments use facilities for integrating content and UI
artifacts. These tools seek to simplify the process of building mashups in graph-
ical drag-and-drop editors, configuration management tools, and other mecha-
nisms. The following sections discuss some of the more prominent mashup
tools and environments currently available.

JackBe Presto Enterprise Mashup Platform

The Presto Enterprise Mashup platform (http://www.jackbe.com) builds on the
Presto enterprise mashup server to provide users with access to disparate data
from such sources as internal services, external services, and application rela-
tional databases.

To build a mashup with the Presto Enterprise Mashup platform, perform the
steps in the following sections.

From the Library of John Jeffrey Hanson

http://www.jackbe.com

ptg31978834

294 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

Download and Install Presto Enterprise Mashup Platform

1. Download the Presto Enterprise Mashup platform from http://
www.jackbe.com.

2. Extract the contents of the zip file into a directory of your choosing.

3. Run the startup script (setup.bat or setup.sh) from the same directory to
set up the Presto configuration. Press Enter for all questions to accept the
defaults or specify your own values.

Run Presto Enterprise Mashup Platform

1. Start the Presto Repository by running the startup script (server.bat or server.sh)
from the /prestorepository/hsqldb directory of your Presto installation.

2. Start the Presto Mashup Server by running the startup script (start-
Presto.bat or startPresto.sh) from the /mashupserver directory of your
Presto installation.

3. Go to the Presto home page at http://<hostname>:<port>/presto. Choose
Upgrade and copy and paste the license key from the email sent to you
from JackBe.

4. Go to the Presto home page at http://<hostname>:<port>/presto/home and
log in using admin/adminadmin as the username and password. You will
be presented with a page that looks similar to that shown in Figure 8.1.

Publish Sample Services and Mashups
JackBe supplies some sample services and mashups that you can use to get
acquainted with the platform. These are registered by running the script (regis-
tersamples.bat or registersamples.sh) found at /prestocli of your Presto installa-

Figure 8.1 The JackBe Presto Enterprise Mashup platform home page

From the Library of John Jeffrey Hanson

http://www.jackbe.com
http://www.jackbe.com

ptg31978834

TOOLS FOR BUILDING MASHUPS 295

tion. Once the samples are registered, you must publish them by running the
script (publish-mashups.bat or publish-mashups.sh) found at /mashupclient/bin
of your Presto installation.

After the samples are registered and published, refresh the Presto Enterprise
Mashup platform home page. The home page now appears similar to Figure 8.2.

Click the Create Mashups button to start the Presto Wires environment. You
are now presented with a page similar to Figure 8.3.

The Wires environment exposes a canvas containing a required output icon
or “block.” The output block represents the ultimate results of the mashup.
You build your mashup by adding blocks to the Wires canvas and connecting
the blocks. It is important to note that the order in which blocks are added
determines the order the blocks are executed.

Figure 8.4 illustrates the Wires canvas with a YahooWeatherREST block and
another block to its left. The block to the left represents the zip code that will
be used as parameterized input for the weather block. The weather block will

Figure 8.2 The JackBe Presto Enterprise Mashup platform home page with sample
services and mashups

Figure 8.3 The JackBe Presto Wires environment

From the Library of John Jeffrey Hanson

ptg31978834

296 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

use the zip code, retrieve weather information for the location represented by
the zip code, and send the weather information to the output block.

The mashup created from the blocks shown in Figure 8.4 produces RSS con-
taining the weather for the input specified.

Once you have specified the blocks, parameterized them as you want, and con-
nected them, connect the final block to the output block. Now, click the Save
icon at the top of the Wires page. Enter a name, description, information provider,
and tags for the mashup and click the OK button. When a mashup is saved, it is
saved in a sandbox area. You must publish the mashup for others to use it. To
publish the mashup, click the Publish icon at the top of the Wires page. The
mashup can then be used on its own or by others to create additional mashups.

Pentaho Google Maps Dashboard

Pentaho dashboards (http://www.pentaho.com/products/dashboards/) is a mashup
tool that delivers information using a visual interface to provide a view into
individual, departmental, or enterprise performance metrics. Pentaho dash-
boards deliver information to business users to allow them to understand and
improve organizational performance by using vital metrics information.

Pentaho dashboards deliver information to business users by providing

• Metrics-management capabilities that define and track vital metrics at the
individual, departmental, or enterprise level

• A user interface that allows business users to see which metrics are per-
forming well and which need to be adjusted

• Reports and analysis showing which factors are contributing to poor per-
formance and to the most favorable performance

Figure 8.4 The two blocks added to the Wires environment

From the Library of John Jeffrey Hanson

http://www.pentaho.com/products/dashboards/

ptg31978834

TOOLS FOR BUILDING MASHUPS 297

• Delivery of business metrics to large numbers of users, integrated into por-
tal applications

• Notifications alerting users of exceptions

Pentaho has integrated with Google Maps in a mashup environment to pro-
vide geographical functionality to Pentaho reports and analyses.

This capability is made possible via a content and data mashup between
Google Maps and Pentaho’s business intelligence framework. To implement
this, you use a series of Pentaho action sequences, which are instructions to
Pentaho’s solution engine, to retrieve address information for geographical
regions of customers. You then use Google’s GClientGeocoder class to change the
address information into latitude and longitude coordinates. These coordinates
are then passed to the Google Maps API as the browser’s onload() event is fired.
The coordinates are then plotted on the map.

Points on the map are color-coded to represent the location for each customer.
When you change the threshold limits, the points on the map are updated.

Figure 8.5 illustrates an example of a Pentaho dashboard.

Figure 8.5 An example of a Pentaho dashboard

From the Library of John Jeffrey Hanson

ptg31978834

298 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

One of the primary features of the Pentaho dashboard is its ability to display
detailed sales data, as a report or as a chart, for each customer plotted on a
map. This is accomplished using Pentaho’s action sequences, which are combi-
nations of AJAX functionality and data from the Google Maps API. When a
point on a map is selected by a user, the Pentaho engine retrieves the data for
the customer, builds a chart or report representing the data, and transmits the
result to the browser to be displayed in the dashboard.

Serena’s Business Mashups for Oracle

Unitask Software offers solutions for the Oracle E-Business Application Suite.
These solutions enable clients to solve issues relating to deployment, use, and
maintainability for an on-demand Oracle E-Business Application environment.
The Serena Business Mashup foundation enables a productive boost to the Oracle
environment via coordination, automation, and collaboration. The integration
of the Unitask Object Migration Manager (OMM) with Serena Business Mash-
ups automates the transition of Oracle E-Business Suite components through
development, testing, and production.

Serena Business Mashups provide traceability and auditing within a mashup,
providing a powerful solution for auditing internal and external processes.

Serena Business Mashups allow you to control mashups, deploy mashups,
version mashups, and report on the history of mashup deployments. This pro-
vides visibility into a mashup infrastructure allowing you to monitor critical
systems.

The OMM mashup integrates multiple frameworks, components, and
objects including profiles, PL/SQL packages, forms definitions, reports, tables,
views, and others.

OMM provides a solution for moving objects and components between Oracle
E-Business Suite instances. The security architecture of Unitask’s OMM enables
organizations to ensure that only authorized individuals can commit approved
changes. OMM’s user interface enables users to migrate work from one
instance to another in a manageable and secure way.

OMM integrates with Oracle E-Business Suite as follows:

• Via the Oracle E-Business Suite security infrastructure

• Using the standard Oracle UI

• As an internal component of the Oracle E-Business Suite

The OMM mashup records migration of components within the Serena Busi-
ness Mashup repository. By centralizing the migration process, the OMM and

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 299

Serena Business Mashups integration provides a central location from which to
audit change control processes.

Figure 8.6 illustrates the relationships between clients, Oracle E-Business
Suite components, Serena’s Business Mashup, and Unitask’s Object Migration
Manager.

Figure 8.6 illustrates how Unitask’s OMM acts as the primary integration
point between Oracle’s E-Business Suite source and target components in a
mashup development scenario.

Automated migration of components in the Serena Business Mashup can be
performed by a diverse group of talent including developers, business experts,
and others without requiring expert knowledge as to the components being
migrated.

By adopting the Serena Business Mashup platform, an organization enjoys a
solution that solves common business problems involving the transfer of con-
trol from Oracle to other applications and data sources.

The Serena Business Mashup platform is complemented by a powerful devel-
opment environment, the Serena Mashup Composer. To get started building
mashups with the Serena Mashup Composer, perform the steps in the following
sections.

Figure 8.6 Relationships between clients, Oracle E-Business Suite components,
Serena’s Business Mashup, and Unitask’s OMM

Oracle
E-Business

Suite Source
Component

Oracle
E-Business
Suite Target
Component

OMM

Serena
Business
Mashup

Clients

PVCS

From the Library of John Jeffrey Hanson

ptg31978834

300 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

Building a Mashup with Serena Mashup Composer

1. Download Mashup Composer from http://www.serena.com.

2. Register for a Serena Business Mashups account. After you register for a
Serena Business Mashups account, you receive an email message confirm-
ing that your account has been activated.

3. Install Serena Mashup Composer by executing the installation program
from the downloaded location.

4. Launch Mashup Composer from the Windows Start menu and click Con-
nect Mashup Composer to Your On Demand Account to connect to the
Mashup Repository. Provide the information from the confirmation email
you received, including machine name, port, username, and password.
Mashup Composer now presents a screen similar to Figure 8.7.

Figure 8.7 Serena Mashup Composer startup screen

From the Library of John Jeffrey Hanson

http://www.serena.com

ptg31978834

TOOLS FOR BUILDING MASHUPS 301

Create a new mashup by following these steps:

1. From the top toolbar, select the Mashup button, choose the Blank Mashup
type, and then type a name and category for your mashup. Click OK.

2. Click the Application button from the top toolbar and then enter a unique
name for your application. Click OK. And then click OK on the next dialog.

3. Right-click the Forms node in the All Items pane on the left. Select Add
New > State Form from the pop-up menu.

4. Scroll to the bottom of the Form Palette on the right of the screen. Drag
the RSS Widget onto the new State Form.

5. Enter a URL for an RSS feed such as http://feedproxy.google.com/
ProgrammableWeb. Now, drag the Google Gadget Widget from the Form
Palette to the State Form.

6. Click the Search for Google Gadget link to the right of the Content field in
the Property Editor. This loads the Google Gadgets web page in a browser.

7. Choose a Google Gadget, such as TheStreet.com Ratings gadget. Copy the
code for this gadget and paste it into the Content field of the Property Edi-
tor in Serena Mashup Composer.

8. Click the Preview button from the top toolbar to preview the mashup.

9. Click the Save icon from the top-left of the screen to save the mashup locally.

10. Select the Home tab at the top of the page, and then select Deploy. Follow
the steps for deploying your mashup to the Business Mashups server.

Your mashup is now complete and ready to be used.

Salesforce AppExchange

Salesforce’s AppExchange provides an on-demand application-sharing Plat-
form-as-a-Service (PaaS) that enables a way to browse, try, install, and publish
applications developed on the Force.com platform. Users can build and publish
applications to the AppExchange directory, allowing other Salesforce users an
easy way to find, install, and use the applications.

Web Service APIs
The Force.com platform provides web services APIs that enable programmatic
access to an organization’s information using a mashup API.

From the Library of John Jeffrey Hanson

http://feedproxy.google.com/ProgrammableWeb
http://feedproxy.google.com/ProgrammableWeb

ptg31978834

302 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

The Force.com platform allows users to customize, integrate, and extend an
organization’s applications and services using multiple languages by

• Customizing the applications with custom fields, links, objects, layouts,
buttons, record types, s-controls, and tabs

• Integrating Salesforce with the organization’s internal systems

• Delivering real-time information to company portals

• Populating business systems with customer information

• Extending the application’s UI, business logic, and data services with new
functionality to meet the business requirements of the organization

The Force.com API complies with the SOAP (Simple Object Access Protocol)
1.1 specification, the WSDL (Web Service Description Language) 1.1 specifica-
tion, and WS-I Basic Profile 1.1.

To access the Force.com web services APIs, you need a WSDL file that
defines the web service. The WSDL can be used to generate an API to access the
Force.com web service it defines.

There are two Force.com web services APIs for which you can obtain WSDL
files:

• Enterprise Web Services API—This API is typically used by enterprise users
who are developing client applications for their organization. The enter-
prise WSDL file is a strongly typed representation of an organization’s
data. It provides information about an organization’s schema, data types,
and fields, allowing a tight integration between the organization and the
Force.com web service

• Partner Web Services API—This API is typically used by Salesforce.com
partners who are developing client applications for multiple organizations.

Once users have access to a WSDL file, it can be imported into a development
environment to generate programming objects to use in building web service
client applications for a given programming language. Web service client appli-
cations use standard web service protocols to perform such functionality as

• Log in to the server and receive authentication information.

• Query an organization’s information.

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 303

• Perform text queries against an organization’s data.

• Create, update, and delete data.

• Perform administrative tasks, such as retrieving user information, chang-
ing passwords, and so on.

• Replicate data locally.

All Force.com web services API calls are

• Service requests and responses—A client application prepares and submits
a service request to a Force.com web service API and receives a response.

• Synchronous—Once an API call is invoked, a client application waits until
it receives a response from the service. A failed invocation results in an
error being returned.

• Automatic—Every operation that writes to a Salesforce object is commit-
ted automatically to storage. Attempts to write to multiple records in an
object are treated as separate transactions.

Figure 8.8 illustrates the Force.com API stack.

Security
Client applications that access an organization’s Salesforce data are subject to
the same security protections that are used in the Salesforce user interface.
Additional protection is available for organizations that install AppExchange
managed packages if those packages contain components that access Salesforce
via the API.

Figure 8.8 Force.com API stack

Force.com API Stack

Application Exchange

User Interface as a Service

Logic as a Service

Integration as a Service

Database as a Service

Infrastructure

From the Library of John Jeffrey Hanson

ptg31978834

304 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

User Authentication Calling applications must log in using valid credentials for
an organization. The server authenticates the credentials and, if found to be
valid, provides the calling application with

• A session ID—This can be used by all subsequent web service calls during
the session.

• A URL address—This is used for the client application’s web service requests.

An organization’s administrator to Salesforce controls the availability of
given functionality by configuring profiles and assigning users to them. To
access an API, a user must be granted the proper profile permissions. Client
applications can query or update only objects and fields to which they have
access as configured in their profile.

When users log in to Salesforce, either via the Salesforce UI, programmatic
API, or a desktop client, Salesforce confirms that the login is authorized in such
ways as the following:

1. Salesforce checks whether the user’s profile has time restrictions. If time
restrictions are specified, any login outside the specified hours is denied.

2. Salesforce checks whether the user’s profile has IP address restrictions. If
IP address restrictions are defined for the user’s profile, any login from an
undesignated IP address is denied.

3. If the login is directed from a browser that includes a Salesforce cookie,
the login is allowed.

4. If the user’s login is from an IP address in an organization’s trusted IP
address list, the login is allowed.

API Access in AppExchange Packages The Salesforce AppExchange API allows
access to objects and calls based on the permissions of a user who is accessing
API. To prevent security issues from emerging when installed packages have
components that access data via the API, Salesforce provides additional secu-
rity, including

• Restricting access to component APIs

• Restricting access to an AppExchange package by an administrator when
the package is installed

• Restricting outbound ports to any feature where a port is specified, such as
outbound messages, AJAX proxy calls, and so forth

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 305

Outbound Messaging
SOAP messages can be sent by Salesforce’s outbound messaging to a designated
endpoint when a workflow rule change is triggered.

An outbound messaging listener operates under the following conditions:

• The listener must be reachable from the public Internet.

• The message must be transported from ports 80, 443, or 7000-10000
(inclusive).

• The common name (CN) of the certificate must match the domain name
for your endpoint’s server, and the certificate must be issued by a trusted
certificate authority.

Kapow Mashup Server

Kapow Technologies offers a group of software products providing business
solutions for content migration, portal facilitation, web service support, and
on-demand harvesting of web content.

The Kapow Mashup Server product family provides solutions for the follow-
ing areas:

• Web data collection and content migration

• Creation of web services and data feeds via REST, WADL, RSS, and
ATOM

• On-demand mining of web-based information that can be imported
directly into Excel

• Clip and deploy of web content to portals

Kapow Mashup Server offers three editions, discussed in the following sections.

Data Collection Edition
The Data Collection Edition allows you to access multiple data types, using a
visual scripting environment. Web content and data collected can then be writ-
ten to a database, published as a web service, or transformed for use by other
applications. Java and C# APIs are provided to drive the execution of robots.

Figure 8.9 illustrates the components and interactions of the Kapow Data
Collection Edition.

The Data Collection Edition allows you to access multiple data types, using a
visual scripting environment. Collected data within the Data Collection Edition
can be manipulated using a set of provided C# and Java APIs.

From the Library of John Jeffrey Hanson

ptg31978834

306 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

Web 2.0 Edition
The Web 2.0 Edition allows you to create an RSS feed from ordinary web sites
and to add the feed to an RSS reader.

Figure 8.10 illustrates the components and interactions of the Kapow Web 2.0
Edition.

As shown in Figure 8.10, Kapow Web 2.0 Edition provides a strong relationship
between web content, SDKs, and other mashup development environments.

The Web 2.0 Edition uses REST and RSS as the mechanisms for collecting
data from web sites.

Portal Content Edition
The Portal Content Edition is a development environment that interacts with
portals via the web interface. This edition does not require a proprietary portlet
development container or environment.

Figure 8.11 illustrates the components and interactions of the Kapow Portal
Content Edition.

As shown in Figure 8.11, Kapow Portal Content Edition provides an integra-
tion point between web content, portals, and mashup development environments.

Figure 8.9 Kapow Data Collection Edition

Internet

Collect

Transform

Integrate

Data Collection
Edition

Email

XML

PDFs

Office
Documents

Enterprise Data Sources

Structured File
System Data

.NET
Applications

Java
Applications

Corporate
Data Stores

SQLSOAP/XML

SOAP/XML

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 307

Figure 8.10 Kapow Web 2.0 Edition

Figure 8.11 Kapow Portal Content Edition

Internet

Web
Content

Business
Logic

REST/RSS/
Atom

Mashup
Builders

Kapow Excel
Connector

Development
Kits

REST AtomRSS

Web 2.0 Edition

Generate and
Export Feeds

Generate and
Publish Services

Application
Server Portal

Development
Kits

Portlet/Servlet

Web Clipping

Single Sign-on

XSLT
Transformed

Data

Portal Content
Edition

Internet

Web
Content

Business
Logic

From the Library of John Jeffrey Hanson

ptg31978834

308 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

Systemation Corizon

Corizon’s platform provides an environment in which prefabricated UI compo-
nents can be assembled to create new composite user interfaces for mashup
applications. This allows business logic to be mashed into composite applica-
tions targeting different business scenarios or user groups.

The Corizon platform also provides configuration tools and a deployment
infrastructure that uses functionality from multiple applications and systems to
deliver solutions that address disparate and dynamic needs.

Figure 8.12 illustrates the relationships of components operating within the
Corizon platform.

The Corizon platform provides the following functionality:

• UI service enablement—This allows users to noninvasively refactor
unstructured, existing UI artifacts into reusable services that represent
pages, windows, forms, tables, and so on. The resulting services can then
be used in composite applications.

• UI service library—UI services can be deployed to a service provider as a
library of reusable, machine-readable application resources.

• UI service composition—The platform allows users to combine UI services
into new applications and services.

The Corizon Studio exposes and uses the UI Services Library to enable users
to design composite applications. These composite applications can then be
deployed using the Corizon Composer.

Figure 8.12 The Corizon platform

Corizon Platform

Existing UI Existing Data Existing
Services

New Applications
and Services

UI Service
Enablement

Composer

Studio

UI Service Library

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 309

The Corizon Studio seeks to provide the following benefits:

• Remove the burden of complex composite application development.

• Work with organizations to create solutions collaboratively and iteratively.

• Deploy composite applications securely to large user communities.

• Leverage SOA and legacy applications.

• Monitor and understand user activity and system activity.

Attensa Managed RSS Platform

The Attensa Managed RSS platform is a mashup environment facilitating a
managed, RSS/XML, publish/subscribe network that streamlines communica-
tion and collaboration in an organization.

Attensa’s Managed RSS platform and FeedServer connect to blogs, wikis,
and other Web 2.0 platforms allowing information to be shared by groups of
associated users no matter where they are located.

Figure 8.13 illustrates the relationships of components operating within the
Attensa Managed RSS platform.

Attensa FeedServer
The Attensa FeedServer exposes a scalable, publish/subscribe environment that
integrates into IT network environments. The FeedServer is a Java/PHP/JavaScript-
based system that operates on a LAMP stack. Using the FeedServer as an RSS
platform enables groups or organizations to receive and publish RSS informa-
tion securely. Attensa’s publish/subscribe environment supports Confluence,

Figure 8.13 The Attensa Managed RSS platform

Business
Administration

FeedServer

IT
Management

Attensa Managed RSS
Platform

Internal Feeds

External Feeds

AttentionStream

Windows

Mac

Mobile

From the Library of John Jeffrey Hanson

ptg31978834

310 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

Roller, WordPress, Jive Clearspace and Forums, SharePoint, TypePad, Move-
able Type, and others.

The Attensa FeedServer allows users to create custom feeds, edit and publish
content, and channel custom feeds to targeted users and groups.

Users can use the Attensa FeedServer to create an email-to-RSS feed by add-
ing an email address generated by FeedServer to the To: field in an email client.
Content can then be published by sending an email to this address.

The Attensa FeedServer provides users with a central location to discover
applicable feeds that can be organized in a taxonomy-based library using cate-
gories and subcategories. Users can create folders and subfolders, name them,
and move feeds between folders. Users can browse and search through the feed
library to create custom reading lists of relevant feed subscriptions.

Feeds can be added to the Attensa FeedServer using Attensa browser tool-
bars. Attensa toolbars support Internet Explorer and Firefox. These toolbars
can automatically discover RSS feeds on web pages and provide a preview of
the discovered feed content. Custom lists of feeds can be created, imported, and
exported using OPML files.

Users and groups can be configured on the FeedServer locally or by synchro-
nizing with an LDAP directory. The Attensa FeedServer stores all user data in a
database that mirrors and synchronizes with an LDAP directory. This allows
FeedServer to remain current as to organization changes, users, and groups.
FeedServer users can authenticate against an LDAP directory.

The FeedServer uses a tiered architecture with a clustered design to manage
and direct workload demands to specific servers.

Attensa Managed Clients
Attensa offers an assortment of managed client applications for a variety of
environments and platforms. Attensa Managed Clients can direct feeds to web-
based readers, Windows and Mac desktops, Microsoft Outlook, IBM Lotus
Sametime instant messaging, and mobile devices.

Attensa RSS feed readers use AttentionStream technology (discussed in the
following section) and are designed to help business workers track and monitor
dynamic business information without having to search or request it.

Attensa desktop clients provide content prioritization and a set of tools for
publishing, tagging, and collaboration.

Attensa AttentionStream
Attensa’s AttentionStream technology is a predictive ranking protocol that
automatically discovers the most relevant information for users based on
behavior it observes as users read and process articles and feeds. Attention-
Stream continuously analyzes data for a user such as the time and frequency

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 311

that feeds and articles are read, deleted, and/or ignored. This allows Attention-
Stream to display feeds and articles in a prioritized list according to the user’s
interests. This prioritization is continuously refined as future data is processed.

The Attensa FeedServer and Attensa Managed Clients use the Attensa Atten-
tionStream protocol to route information to different reader clients throughout
the Attensa platform. This keeps a user’s clients synchronized. AttentionStream
analyzes a user’s reading behavior and data access patterns to provide reporting
and analytics that can be used by organizations to identify the most efficient
communication channels for a user.

Denodo Platform

Denodo offers a data integration platform that seeks to enable organizations
with the ability to create composite, SOA-based, data services for enterprise
mashups that can access, extract, and merge data across multiple data sources.

The Denodo platform is designed around a three-layered architecture to pro-
vide the following features:

• Access, extract, and update—Three data engines search, gather, and index
data from unstructured data sources, semistructured data sources, and
structured data sources.

• Transform and relate—This layer transforms, normalizes, cleanses, and
combines disparate data using semantic tools, metadata, and a visual
query builder.

• Application integration—Composite data is integrated with applications
and processes using data services, events, feeds, Java APIs, queries, and/or
search interfaces.

Denodo’s enterprise mashup platform provides automation technology that
uses example-based learning to update itself when web sites change.

Figure 8.14 illustrates the relationships of components operating within the
Denodo platform.

As shown in Figure 8.14 the Denodo platform integrates structured, semistruc-
tured, and unstructured data with disparate web and enterprise applications.

The Denodo enterprise mashup platform allows you to access disparate data
sources, internal and external in many different formats, as follows:

• Introspect—Introspect and access relational databases using JDBC and
ODBC, XML, SOAP and REST web services, flat files, Excel files, feeds
using RSS and ATOM, and more.

From the Library of John Jeffrey Hanson

ptg31978834

312 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

• Navigate—Navigate and extract content from non-AJAX and AJAX-
based web sites, blogs, and wikis.

• Connect—Connect to content management systems, file systems, email
systems, and search engines. Also, develop custom connectors to read and
write from data sources via a plug-in architecture.

• Native support—Native parsing, crawling, and indexing support for
Microsoft Word and Adobe PDF file formats.

• Index—Index unstructured data from web sites, flat files, Word docu-
ments, PDFs, email systems, RSS feeds, and relational databases.

Denodo’s enterprise platform provides component-based automation for
accessing disparate web content using

• Component library—Prebuilt components provided for browsing, extract-
ing, and structuring web-based information

• Data handling operators—Operators such as iterators, conditions, and for
data handling

Figure 8.14 Denodo platform

Structured Data

Databases

Applications

Web Services

Data Services, APIs,
Query, Search

Transform and Relate

Data Engines

Enterprise
Applications

Portals and
Dashboards

Web
Applications

Denodo Platform

Unstructured Data

Files

Email

Documents

Web 2.0

Web Feeds

Web Apps

Ell Web Automation Search/Index

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 313

• Automation—Component wizards to simplify process generation

• Native support—Native support for building and reusing JavaScript UI
artifacts

• Automated maintenance—An automatic maintenance mechanism with the
ability to build self-maintaining web extractions

• Workflow modeling—Workflow process modeling for automation of web
and data integration processes

The enterprise platform offered by Denodo allows you to mashup web data
with enterprise databases, applications, and unstructured information, as follows:

• Graphically—Transform and combine different data types using graphical
tools.

• Hierarchically—Manage hierarchical information natively.

• Structurally—Combine structured data with unstructured data using text
mining mechanisms, taxonomy filters, and semantic tools.

• Flexibly—Data transformation GUI and programmatic tools and data
cleansing mechanisms that can be extended with plug-in tools.

• Semantically—Metadata visualization and exchange.

The platform allows you to integrate Denodo with other enterprise or web
architectures in the following ways:

• Integrates with systems via JDBC, Java APIs, SOAP and REST web ser-
vices, message buses, search interfaces, RSS feeds, and others

• Supports queries of XML data using XPath

Denodo’s enterprise platform provides a data integration engine that provides

• Delivery of data asynchronously

• Query processing delegation that intelligently uses the most capable data
source

• A configurable cache system that enables tuning to serve queries directly
from a cache

• Session transfer among IE/Firefox browsers and other HTTP/JavaScript
clients

From the Library of John Jeffrey Hanson

ptg31978834

314 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

The Denodo enterprise platform provides security features such as

• Granular authentication to databases and data views using LDAP or built-
in security

• Firewall support to distributed components to different network segments

• SSL encryption and authentication for communication between modules

The platform enables scalability and reliability as follows:

• Support for third-party load balancers

• Transactional catalog storage, automated swapping, support for XA-
compliant endpoints

• System management via JMX

• View and source query execution plan trace

FlowUI RIA Enterprise Mashup Framework

The FlowUI RIA Enterprise Mashup Framework is an open source software
development framework for building Rich Internet Applications (RIAs).
FlowUI can mashup data and services exposed by an enterprise or from exter-
nal sources. FlowUI is implemented using Adobe Flex and can, therefore, run in
a browser-based environment across all major OS platforms including Win-
dows, Macintosh, and Linux.

The FlowUI framework is designed around the concepts of the Model-View-
Controller-Service (MVCS) architecture with enhancements to facilitate the
development of enterprise applications.

An application built on FlowUI is divided into four logical components rep-
resenting state, presentation, business logic, and communication. These compo-
nents are defined as follows:

• Model—The state of the application. The model is composed of value
objects for an application. Updates to the model are made known to com-
ponents in the view via data binding.

• View—Composed of the visual components that embody the UI including
Adobe Flex interface components, FlowUI interface components, and
application-specific pages and components.

• Business Logic—Contains the business logic for an application.

From the Library of John Jeffrey Hanson

ptg31978834

TOOLS FOR BUILDING MASHUPS 315

• Service—Contains service proxies that communicate with remote services
to provide data and functionality to an application. Data returned from
services is used to update the model. Service proxies can be autogenerated
by the Adobe Flex Builder Import Web Service utility.

Figure 8.15 illustrates the logical application architecture of the FlowUI RIA
Enterprise Mashup Framework.

The FlowUI RIA Enterprise Mashup Framework requires the Adobe Flex
Framework, and using Adobe Flex Builder is recommended.

The FlowUI RIA framework uses a data dictionary to store all the attributes
about an application’s value objects, including their properties and interrela-
tionships. FlowUI uses the information in the data dictionary to automate the
generation of UI artifacts that display and edit an application’s data. These gen-
erated UI artifacts manage data conversion, formatting, validation, data man-
agement in value objects, and interrelationships between value objects.

Figure 8.15 The logical application architecture of the FlowUI RIA Enterprise
Mashup Framework

interacts

View

Service

Business Model

invokes notifies updates

updates

invokes updates

updates

Backend
Server

Backend
Server

communicates communicates

Backend
Server

communicates

From the Library of John Jeffrey Hanson

ptg31978834

316 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

The FlowUI framework pages are implemented as self-contained compo-
nents built around the MVC design pattern.

The logical page components of the FlowUI framework are as follows:

• Model—The model is composed of data that is specific to a page. When
data in the model is updated it notifies the components in the view via
data binding.

• View—The view is composed of the MXML file for a page and the page’s
visual components. The components are bound to the model.

• Controller—The controller is embodied within a Page Command Handler
object that can invoke business logic in the application’s business layer.

Figure 8.16 illustrates the logical page components of the FlowUI RIA Enter-
prise Mashup Framework.

FlowUI forms are designed to simplify common user interface tasks in an
enterprise application. FlowUI forms are configuration driven and retrieve

Figure 8.16 The logical page components of the FlowUI RIA Enterprise Mashup
Framework

interacts

invokes notifies updates

updates

View

Page

View

Command
Handler

Model

Business Model

invokes notifies updates

updates

invokes notifies updates

updates

From the Library of John Jeffrey Hanson

ptg31978834

COMMERCIAL MASHUPS 317

attributes about the data to be displayed and edited from the application data
dictionary.

Commercial Mashups

Many commercial mashups are becoming available every day. The following
sections discuss a few of the more prominent commercial mashups currently
available.

Arrowpointe Maps

Arrowpointe Maps is an on-demand mashup that facilitates communications
between Salesforce.com and MapQuest, enabling a simple means for users to
map Salesforce data.

Three approaches can be used to plot data on a map using Arrowpointe
Maps:

1. Map pages—These are configurable query pages that an administrator
configures for users. It provides end users a user interface for using specific
fields to view data on maps. Map Pages support mapping of items on
Salesforce.com such as Leads, Accounts, Contacts, Cases, and custom
objects.

2. Map from views—Custom buttons for Leads, Accounts, Contacts, Oppor-
tunities, and Cases are downloaded in an AppExchange application that
can be placed on Salesforce Views. This lets users map records in a view.

3. Map from reports—This lets users apply a map to any report data that has
an address or a portion of an address.

Zmanda Internet Backup to Amazon S3

Zmanda is the commercial division of Amanda, an Open Source backup and
recovery application with partners that include Red Hat, MySQL, and Oracle.

Zmanda’s primary product is Amanda Enterprise, a network-based backup
and recovery mashup solution designed to back up and recover files from multi-
ple hosts across a network and store data on Amazon’s S3 online storage ser-
vice, disk, tape, or other devices. Also offered is Recovery Manager (ZRM) for
MySQL, which is aimed specifically at MySQL-based databases and applica-
tions. Amanda Enterprise’s support for Amazon S3 is configurable for each
Amanda Enterprise Server.

From the Library of John Jeffrey Hanson

ptg31978834

318 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

To use Amanda Enterprise’s support for Amazon S3, users must purchase the
Zmanda Internet Backup to Amazon S3 option and sign up to use Amazon S3
via Zmanda. S3 users are charged using a pricing model that involves both data
transfer and storage capacity usage.

The Amanda Enterprise’s support for Amazon S3 offers the following benefits:

• Optimized—Offsite backup storage and recovery with layered security
and bandwidth optimization

• On-demand—Anytime, anywhere data retrieval that is faster than restor-
ing from offsite tape storage

• ROI—Pay-as-you-go usage

• Management—A browser-based management console that makes it easy
to configure Amazon S3 as a target for backup and archiving

Recovery from Amazon S3 allows you to find files or directories using click
Restore from the management console.

Big Contacts

Big Contacts is a web-hosted contact management and sales force automation
mashup that integrates with technologies from Skype, S3, and Alexa Thumbnail.

Big Contacts includes a group calendar designed to track meetings as well as
events for members of a team. A calendar can be viewed four different ways:

• As a One-Day view

• As a Seven-Day view

• As a 31-Day view

• As a 31-Day Group

Big Contacts comes with a number of built-in reports, including contact
reports, activity reports, and calendar reports. Each report can be downloaded
as an Excel file or viewed in a browser.

Any web-enabled device can be used to access Big Contacts. Mobile access is
enabled via an optimized, dedicated, low-bandwidth version of Big Contacts. It
includes the most commonly used features of Big Contacts. For example, you can

• Search for contacts.

• See contact details.

From the Library of John Jeffrey Hanson

ptg31978834

COMMERCIAL MASHUPS 319

• Schedule meetings.

• Assign tasks.

• View team activity.

Big Contacts has an import wizard to enable importing of all existing contact
data in CSV format. Contacts, meetings, tasks, and contact history can be
exported, as well.

Big Contacts has a search facility providing several ways to find a contact or
group of contacts:

• Standard Search—This involves a single search box that allows users to
enter the name of a contact or company to search for. As a user types, a list
of matching contacts is displayed below the search box. This search pro-
vides the option to search your entire database to locate contact records
that contain a given name anywhere including notes, calls, meetings,
attachments, and emails.

• Advanced Search—This search facility allows users to search on multiple
data fields such as city, contact type, or lead source. A result is returned
with all the matching contacts. Users have the option of downloading
results as an Excel spreadsheet or viewing them in a browser window.

• Contact Browser—This allows users to search for a contact by selecting
which data fields to browse for.

• Tag Browser—This uses preselected tags as the fields on which to search
and operates much like the Contact Browser.

• Contact Table—This allows users to view, edit, merge, delete, and assign
tasks to multiple contacts at once. After loading the Contact Table, users
can select how many contacts to display and can filter them based on con-
tact type and team member.

• Contact Cloud—This presents a page with all contacts’ last names listed.
The contact names will vary in size and color depending on the amount of
activity a contact has seen. Contact activity includes meetings held, tasks
assigned, notes written, and others.

Redfin

Redfin is an online real estate brokerage that employs satellite maps to display
information about homes for sale. The mashup combines real estate listings, tax
records, and analytics to show given homes on a map. Sellers and buyers can
use Redfin’s service to present a home for sale or to negotiate offers on a home.

From the Library of John Jeffrey Hanson

ptg31978834

320 CHAPTER 8 COMMERCIAL MASHUPS AND TOOLS FOR BUILDING MASHUPS

Buyers can search for homes on Redfin’s site, arrange home tours with Redfin,
and initiate an offer on a home listed on the site. Each given transaction (negotia-
tions, contingencies, and paperwork) is handled by the same Redfin agent team.

Sellers can use Redfin’s site to present a home for sale. A local Redfin team
works with sellers to get a home ready to sell and to set the price. Once an offer is
received, Redfin negotiates on behalf of the seller and manages all the paperwork.

Redfin’s business model is based on handling transactions partially online
and partially face-to-face. The Redfin technology mashes real estate listings
with third-party data, including maps, property outlines, third-party appraisals,
and tax records. Redfin employs agents directly and compensates them based
on customer satisfaction.

The platform exposed by Redfin uses Microsoft Virtual Earth as the underly-
ing map infrastructure. Microsoft Virtual Earth provides features such as

• Address/location lookup

• Geocoding and batch geocoding

• Business/Yellow Page listings

• Driving directions

• Real-time traffic incidents/congestion

• Points of interest near a location

• Direct integration into Redfin site

• Lists of geographic entities for a particular geographic latitude/longitude

Summary

Enterprise mashups can be found in many different applications and services.
Mashups are used in real-life situations such as web traffic reports, maps, and
other analytical data; repair, order, and service history reports for the aircraft
industry; and real estate reports integrating client data to match a buyer’s need
with a seller’s property.

This chapter presented content and examples to help bring together many of
the threads and concepts introduced throughout the book.

In the next chapter I discuss some of these trends and possibilities that enter-
prise mashups are likely to follow, and I propose forecasts for the future of
enterprise mashups.

From the Library of John Jeffrey Hanson

ptg31978834

321

Chapter 9

Mashup Forecasts and Trends

An enterprise mashup environment offers enterprises many opportunities to
integrate data and systems that prove useful in daily business operations. Using
this integration in an intelligent manner can make a huge difference in an orga-
nization’s bottom line. Exploiting the dynamic nature of an enterprise mashup
infrastructure to achieve strategic objectives can prove profitable for an organi-
zation over time. Aside from helping domain experts for a business meet mar-
ket needs responsively, a mashup infrastructure enables an enterprise to realize
reduced costs in application development and maintenance. In a mashup envi-
ronment, services and applications can be created by non-IT people, therefore
reducing typical bottlenecks encountered when technical talent is needed.
Mashup artifacts such as widgets, semantic data, and business services can be
reused by developers and domain experts within an organization as well as by
business partners.

The trends and possibilities for enterprise mashups look promising. In this
chapter I discuss some of these trends and possibilities that enterprise mashups
are likely to follow and propose forecasts for the future of enterprise mashups.

Solving Problems with Enterprise Mashups

Enterprise applications and services largely depend on structured data from
relational databases and email servers. Business organizations use proprietary
office suites and content management systems to use unstructured data that is
stored in documents and on file systems. Semantic technologies are helping to
add structure to much of the content used today via RSS and Atom feeds. Simi-
larly, previously unstructured data found in web pages is slowly becoming
structured with semantic technologies. Enterprise mashup infrastructures are
beginning to emerge and are offering integration solutions within organizations
for structured and unstructured information.

From the Library of John Jeffrey Hanson

ptg31978834

322 CHAPTER 9 MASHUP FORECASTS AND TRENDS

Businesses are realizing the value hidden in the vast amount of data that is
stored in their information systems. This information, enabled with semantic
meaning, offers a competitive edge and a productivity boon to organizations in
ways that up to this point have been prohibitive to consider. The introduction
of mashup techniques and technologies is a point of integration for data, pro-
cesses, and UI artifacts that is enabling organizations with a form of agility that
has not been available up to now.

Enterprise mashup infrastructures and semantic technologies automate the
extraction of content from web pages, disparate data stores, heterogeneous
information systems, and other structured and unstructured information
sources. Extracted information is then repurposed in a mashup environment to
be used by other applications and services in insightful ways that prove useful
as markets demand. The dynamic nature of an enterprise mashup environment
enables a business to provide a level of service that in the past has been com-
pletely reliant on the availability of software engineering resources. No longer
will businesses be restricted by this reliance. On the contrary, businesses will
soon be able to respond to market demands using very high-level tools and
techniques in the hands of domain-savvy users.

Enterprise mashups are beginning to be applied in many different ways.
Database management personnel are using mashup techniques and technologies
to create frameworks of reusable data components and services from structured
and unstructured data sources. These components and services can be orches-
trated to form composite applications and services to solve real-time business
problems. In this environment, domain experts can integrate data components
and services to create location-specific, effectively targeted sales campaigns
based on information gleaned from call centers, CRM systems, and product
lists. Similarly, organizations can extract information from semantically rich
data components and services to intelligently identify potential customers, gar-
ner feedback about current products and services, and draw comparisons with
competitors. In this respect, enterprise mashups are being used to dynamically
and effectively solve integration problems. Enterprise mashups can provide arti-
facts and components to the financial services industry to enable precise invest-
ing and marketing efforts.

For example, analyzing sales data for a given time period can be intelligently
facilitated using artifacts and time-series data integrated from CRM systems,
sales reports, and online maps services. This integrated mashup can be embod-
ied as a dashboard that can be viewed and manipulated by marketing and sales
professionals to enable them to direct future efforts towards strategic goals
offering the most ROI.

Another area that is sure to benefit from the mashup world is business intel-
ligence (BI) analysis. BI offers support to organizations to enable them to make

From the Library of John Jeffrey Hanson

ptg31978834

SOLVING PROBLEMS WITH ENTERPRISE MASHUPS 323

predictive business decisions based on historical data gathered from sales
reports, production systems, accounting numbers, and others. Exposing histori-
cal data as semantic artifacts permits a mechanism that can be used to build
tools that organizations can use to respond to market trends and user patterns
proactively rather than reactively.

Figure 9.1 illustrates the integration possibilities provided by an enterprise
mashup infrastructure.

Figure 9.1 illustrates how a mashup infrastructure acts as the primary inte-
gration point for disparate data found in various business systems.

As semantic technologies propagate across the web, the Internet itself will
become collectively more intelligent and will thereby provide information that
can be used reliably to build analytical business tools.

Marketing will use semantic technologies to target potential customers in a
contextual manner. Using semantic data collected from web sites, an organiza-
tion will be able to publish ads that fit the context of the web site more accu-
rately. Organizations will also be able to publish ads based on behavioral
patterns with confidence rather than attempting to guess the context of a given
web site or search result based on the vague meanings of groups of phrases
found on the page.

Enterprise mashups arrive at a time when solving the problem of integrating
disparate data sources and content has reached a critical point. The promise of
simplified transformations, integration, and management that enterprise mash-

Figure 9.1 The integration possibilities provided by an enterprise mashup infrastructure

Web Browser

Web Page

On-demand JavaScript

HTML
Snippet

Gadget

Widget Widget

Accounting
System

Office
Documents

Sales
Reports

CRM
System

Single Sign-
on Provider

Shipping
Vendor

Google
Maps

External
RSS Feed

Enterprise
Mashup

Infrastructure

HTTP/
HTTPS

Local
Database

From the Library of John Jeffrey Hanson

ptg31978834

324 CHAPTER 9 MASHUP FORECASTS AND TRENDS

ups offers is timely indeed. This simplification is due to the ability of mashups
to be created and maintained by nontechnical or semitechnical users.

The generation of users entering the workforce today is well acquainted with
the Internet and basic computing concepts. This trend will certainly continue to
grow with emerging generations of users to the point that creating applications
and services from reusable mashup artifacts will be second nature. However,
this trend will only equate with productivity if organizations expose infrastruc-
tures of mashup artifacts that hide the more complex issues surrounding enter-
prise integration, such as governance, security, and management.

Building an Open, Agile Mashup Environment

For an organization to realize the benefits that mashups promise, the organiza-
tion needs to equip itself with a mashup infrastructure that will provide users
and domain experts with the proper tools. Specifically, an enterprise mashup
infrastructure must provide flexible, dynamic mashup artifacts and services that
are enabled with the intelligence specific to the particular vertical domain of the
organization. The mashup infrastructure must be comprehensive enough to
provide a secure environment in which internal users can operate safely and in
which partners can operate without worrying about data privacy, compliance
violations, and other issues.

Enterprise Mashup Environment Considerations

Mashup builders are beginning to emerge that provide intelligent tools, ser-
vices, and artifacts to domain experts, enabling them with the power to create
new applications and services without assistance from an IT department. This
will eventually evolve to the point where the mashup environment will be con-
sidered an unseen IT group, providing the resources to create new data integra-
tion components, UI artifacts, and business services.

Within an effective enterprise mashup environment, IT personnel are
released to focus on critical engineering projects, leaving on-demand business
needs such as UI changes, service orchestration, and data integration up to domain
experts and business analysts. This will enable organizations to solve pressing
business problems and exploit new business opportunities more effectively.

Realizing the benefits provided by a dynamic mashup infrastructure in an
enterprise environment depends on how effectively the mashup infrastructure
operates within the constraints that control all enterprise IT systems, such as
security, governance, and compliance. The openness enjoyed by the consumer
mashup model must be tempered to operate behind firewalls and security barriers.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING AN OPEN, AGILE MASHUP ENVIRONMENT 325

The following list outlines some of the guidelines that organizations should
follow when provisioning themselves with an enterprise mashup infrastructure:

• Choose techniques and technologies that can be used to build UI artifacts,
data components, and services to ease information access for your domain
experts.

• Decide which applications, services, and data currently available to your
organization will provide the most ROI when exposed as reusable mashup
components. Pay particular attention to data and services that might have
been overlooked when using traditional software engineering methods.
This will include any unique datasets and services that are individually
small in number but significant when viewed as a group. This is often
referred to as “The Long Tail” of a sales graph.

• Apply proper restrictions to data and services. Ensure that a comprehen-
sive permissions framework is in place to provide the proper flexibility to
all forms of data access throughout the infrastructure.

• Be sure to design and create UI artifacts, data components, and services
that will provide a positive ROI most quickly.

• Think long term. The infrastructure should be viewed as a living organism
that will evolve to adapt to business demands for years to come.

Securing information in a mashup model is a tricky proposition when trying
to create a flexible, agile infrastructure. Information needs to be accessed from
multiple sources and must be available to multiple receiving parties. Securing
information in this open environment is complex and must be implemented
with great care to keep unwanted eyes from viewing sensitive data.

An essential part of a mashup security strategy is the understanding of where
data will be integrated before it is presented to a user or to an application. If
you have a firm grasp on this process, the proper constraints and technologies
can be applied and restricting access becomes much easier. The goal for apply-
ing security in an enterprise mashup infrastructure is creating an environment
where corporate guidelines are enforced and creativity is encouraged. This
encourages users to embrace your mashup model and promotes a positive,
cooperative, replication environment among mashup users, applications, and
services.

Another primary ingredient of a successful mashup security strategy is pre-
senting an authentication and authorization framework to users and applica-
tions where multiple protocols and methods are supported without too much
additional work by users of the framework. A comprehensive framework must

From the Library of John Jeffrey Hanson

ptg31978834

326 CHAPTER 9 MASHUP FORECASTS AND TRENDS

support methods such as username/password, PKI, OAuth, SAML tokens, Ker-
beros, and others.

Performance and availability are other considerations that must be
accounted for in a successful enterprise mashup infrastructure. Performance
and availability in a normal web application environment can be a formidable
task in itself. Adding the complexity of reliance on third-party services and
components makes this task much more difficult. Extensive testing models and
processes must be in place to continually monitor access to third-party services
to address any bottlenecks that may occur at any time. Service level agreements
(SLAs) become much harder to support in an environment where performance
is reliant on many third-party services and artifacts. Therefore, you must ensure
that all third-party components offer the same degree of assurance that you are
charged with according to any SLAs in place. Caching and out-of-process
updates are mechanisms that can be applied to third-party data to help meet
performance requirements.

An enterprise mashup infrastructure must above all promote extensibility
through customization. This implies that your architecture presents a public
interface that remains constant across revisions so that users might be able to
confidently build upon your infrastructure without concern that future
upgrades and updates will negatively impact their efforts. This can be solved
with intelligent and effective management tools and frameworks that provide
the ability to update individual modules within the infrastructure without
affecting other modules.

Finally, an effective and agile enterprise mashup infrastructure should
encourage and support industry standards pertaining to the business domain of
your organization. Standards for data integration, content aggregation, inter-
component communication, service APIs, and so on should be adhered to and
supported to promote reuse of your mashup services and artifacts as well as
enabling your infrastructure with the ability to support as many third-party ser-
vices and artifacts as possible.

OpenSocial, Facebook, MySpace, and Other Social Platforms

The climate that has led to the popularity of the mashup model owes a lot to
the social trends and technologies that have permeated the web. Social interac-
tions on the web have emerged from simple search-and-bookmark activities to
a model comprised of comprehensive semantic discovery and linking with tags
and notifications. This semantically enabled discovery/tag/notification model
has enabled semitechnical users to create interest-based social sites and services
using high-level artifacts and languages. Social sites and platforms are now
some of the most popular stops on the web.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING AN OPEN, AGILE MASHUP ENVIRONMENT 327

For IT departments, supporting social platforms and technologies is no
longer a question of “if” but “when.” Organizations stand to gain substantial
rewards by proper support of a mashup platform that is, by nature, social.
Since most organizations rely on social interaction—for example, word-of-
mouth—to promote products and services, it stands to reason that technologi-
cally based social interactions that can reach vast numbers of potential custom-
ers should be a top priority for marketing and sales efforts.

Many different social platform sites and services have already emerged and
are enjoying great success. These include LinkedIn, Plaxo, Facebook, MySpace,
FriendFeed, and others. Many of these sites are in themselves incarnations of
mashup integration technologies and techniques.

Figure 9.2 illustrates the integration possibilities provided by social plat-
forms and an enterprise mashup infrastructure.

In Figure 9.2 data from various social platforms feeds into a mashup infra-
structure to be integrated with data from internal business systems.

Social networking already reaches into the pockets of users in many ways.
Paid services and applications on social sites, ad networks targeting social site
profiles and bloggers, and music sites sharing information between users are
examples of this. This model will be exploited by enterprises that adapt to
social platforms with necessary constraints and preparations in place.

Figure 9.2 The integration possibilities provided by social platforms and an enterprise
mashup infrastructure

Web Browser

Web Page

On-demand JavaScript

HTML
Snippet

Gadget

Widget Widget

LinkedIn

CRM
System

Sales
Reports

Plaxo Amazon

Facebook MySpace Salesforce.com

Enterprise
Mashup

Infrastructure

HTTP/
HTTPS

Local
Database

From the Library of John Jeffrey Hanson

ptg31978834

328 CHAPTER 9 MASHUP FORECASTS AND TRENDS

An example of a useful implementation of social techniques used in an enter-
prise environment might include tracking prospects by monitoring community
sites to determine potential customers or clients. Another example might use
sites such as LinkedIn or Plaxo to determine the highest-profile clients to design
marketing and sales efforts around enticing and keeping such clients. Certainly
customer care will improve as a result of using semantic technologies to track
user comments and competitors’ activities.

Realizing social platform success at the enterprise level entails using social
technologies and techniques to build relationships with individuals and groups
instead of simply gathering information about potential customers.

Some of the social platforms currently in use are discussed in the following
sections.

OpenSocial Platform
OpenSocial presents a unified API for building social applications with services
and artifacts served from multiple sites. The OpenSocial API relies on standard
JavaScript and HTML as the platform languages developers can use to create
applications and services that interconnect common social connections.

An extensive community of partners is developing OpenSocial. This commu-
nity partnership is leading to a platform that exposes a common framework by
which sites can become socially enabled. Some of the sites currently support-
ing OpenSocial include iGoogle, Friendster, LinkedIn, MySpace, Ning, Plaxo,
Salesforce.com, and others.

OpenSocial presents functionality and content as Google Gadgets. This
allows developers to exploit the toolset that Google presents for building and
deploying gadgets, such as the Google Gadget Editor, XML-based user prefer-
ences, the Google remote content retrieval API, and the gadget sandbox.

APIs for OpenSocial rely on transmitting requests and responses within the
context of an OpenSocial container. A site can host OpenSocial applications if it
supports the OpenSocial container requirements defined in the OpenSocial API
specification. An OpenSocial container is a component running as a server that
adheres to a few restrictions and requirements such as implementing all methods
of the JavaScript API reference; handling all request types defined in the Gadgets
API specification; and supporting JSON, XML, and AtomPub data formats.

Applications written to OpenSocial can communicate with an OpenSocial
container using the OpenSocial RESTful API. This API enables servers, mobile
devices, and browsers to update information, send messages, and retrieve infor-
mation from an OpenSocial container without requiring user participation.
Information is exchanged via AtomPub or as a JSON-enabled service defined in
the OpenSocial REST Protocol specification and the OpenSocial RPC Protocol
specification.

From the Library of John Jeffrey Hanson

ptg31978834

BUILDING AN OPEN, AGILE MASHUP ENVIRONMENT 329

To host OpenSocial applications, a site must implement the methods, data
formats, and request/response patterns defined in the OpenSocial API Specifica-
tion. This can be facilitated easily using the Apache Shindig project (http://
incubator.apache.org/shindig/), which provides an open source implementation
of the OpenSocial API specification and the Google Gadgets API specification.

Portable Contacts Specification
The Portable Contacts specification is targeted at creating a standard, secure
way to access address books and contact lists using web technologies. It seeks
to do this by specifying an API defining authentication and access rules, along
with a schema and a common access model that a compliant site provides to
contact list consumers.

The Portable Contacts specification defines a language-neutral and platform-
neutral protocol whereby contact list consumers can query contact lists, address
books, and profiles from providers. The protocol defined by the specification
outlines constraints and requirements for consumers and providers of the speci-
fication. The specification enables a model that can be used to create an
abstraction of almost any group of online friends or user profiles that can then
be presented to consumers as a contact list formatted as XML or JSON data.

In contrast with other standards relating to contacts and contact information,
the Portable Contacts specification seeks to define a comprehensive set of methods
and mechanisms for discovering, reading, and modifying the contact information.

The current version of the Portable Contacts specification (v1.0 Draft C) is
wire-compatible with version 0.8.1 of the OpenSocial RESTful Protocol specifi-
cation; therefore, any provider compliant with OpenSocial RESTful Protocol
0.8.1 is also a compliant Portable Contacts provider. The Portable Contacts
specification is intended to continue this compatibility with future revisions.

OAuth and Basic Authorization are the two authorization methods currently
supported by the Portable Contacts specification. Service providers of the Port-
able Contacts specification must support OAuth Core and OAuth Discovery if
they want to provide delegated authorization to consumers.

Friendster Developer Platforms
Friendster presents two developer platforms providing APIs to access Friendster
data, integrate with components and services exposed within the Friendster
web site environment, and create applications for the Friendster application
framework. Response data is returned from either platform as XML or JSON.

The first platform, referred to as the OpenSocial Platform, is based on the
OpenSocial standard to allow you to write applications for Friendster. Friendster
installs your OpenSocial-developed application by uploading your application’s
OpenSocial XML file and registering it with Friendster’s application framework.

From the Library of John Jeffrey Hanson

http://incubator.apache.org/shindig/
http://incubator.apache.org/shindig/

ptg31978834

330 CHAPTER 9 MASHUP FORECASTS AND TRENDS

The second platform, referred to as Platform V1, leverages a REST-based
interface to allow access to Friendster data and resources. Platform V1 relies on
a previously issued API key and shared secret key. Platform V1 can be tested in
a Friendster-provided test tool. An application installed in the Friendster envi-
ronment using Platform V1 uses a concept referred to as the “canvas page” of
the Friendster application framework. The canvas page is where the UI for your
application resides when it is activated by a user.

Facebook Platform
Facebook presents an API that embodies a platform for building applications
that execute in the Facebook web site environment for members of the Facebook
social network. The Facebook API permits applications to use the connections and
profile data for Facebook users. This information facilitates applications that
are, in context with the Facebook platform, socially aware. The Facebook API
enables applications to use profile information and connections as a conduit for
publishing to Facebook news feeds and Facebook profile pages. Access to an
individual’s profile information and connections is contingent on the approval
of a profile owner’s permission specified in the individual’s privacy settings.

Facebook relies on an API key and application secret key to identify an
application to Facebook and to authenticate requests made within the Face-
book environment.

As with the Friendster platform, Facebook presents the concept of a canvas page
URL in which an application’s UI resides within Facebook and a callback URL
that is used to specify the location of a host containing the application’s logic.

Client libraries for building Facebook applications in many different pro-
gramming languages are available from Facebook and third-party sites.

MySpace Platform
MySpace presents an application platform that enables you to build applica-
tions that can access and operate on MySpace user information within the con-
text of MySpace site pages. The MySpace platform supports development of
applications based on the OpenSocial model, in regards to accessing data and
interacting with participating sites. The MySpace platform also builds on the
OpenSocial extensions model to enable nonstandard concepts embedded within
photo albums and other page scenarios.

The following are some of the primary aspects of the MySpace application
platform:

• New message types—New types of messages unique to applications within
MySpace are supported by the Application Communications Channel
(ACC) within the MySpace platform.

From the Library of John Jeffrey Hanson

ptg31978834

MOBILE AND SDK-RELATED MASHUPS 331

• Access delegation and request signing—The OAuth standard is supported
by the MySpace platform for HTTP request signing and access delegation.

• Server-to-server communication—Server-to-server HTTP requests are sup-
ported by the MySpace platform via a RESTful API that responds with
either XML or JSON data.

• Canvas page—The MySpace platform also presents the concept of a can-
vas page in which the user interface for applications is contained.

The MySpace application platform provides a test harness in which applica-
tions can be tested using a limited number of profiles.

Developers working within the MySpace application platform can link cer-
tain bits of a MySpace account outside MySpace using the MySpace Data Avail-
ability framework. This framework relies on the OpenSocial REST APIs and
MySpace’s REST APIs to communicate profile information, media snippets,
and social connection graphs within a standards-based model that uses dele-
gated authentication to ensure access privacy via access tokens, partner keys,
and shared secrets as defined by the OAuth protocol to provide delegated
authentication.

Mobile and SDK-Related Mashups

Mobile device usage has escalated to the point that it would be harder for many
people to give up their mobile phone or PDA than it would be for them to give
up any other communication device. This trend coupled with increased mobile
bandwidth and the power that modern mobile devices offer makes the mobile
device landscape a fertile environment for applications and services. This land-
scape is being exploited at an astounding rate by applications exposing loca-
tion-based content, games, collaboration, and so on. The possibilities for
mashup-based applications and services are enormous.

Mobile devices are being equipped with powerful web browsers in which
HTML, JavaScript, and CSS are enabled. This facilitates a prime environment
for widget/gadget technologies. While some mobile-specific techniques and
SDKs are needed for enhanced mobile application development, most standard
web widgets will work fine. This point will ring even more true as mobile tech-
nologies advance.

The advent of such devices as Apple’s iPhone and Google’s G1 demonstrated
that the experience presented by mobile devices can be equal to or greater than
the experience presented by a personal computer. The freedom that mobile

From the Library of John Jeffrey Hanson

ptg31978834

332 CHAPTER 9 MASHUP FORECASTS AND TRENDS

devices offer along with location-based services creates a unique environment
for application developers.

Mashups are showing that simplified integration of data, UI artifacts, and
processes create refreshingly new applications that serve to satisfy specific
needs. This trend is already spilling over into the realm of mobile devices along
with unique mobile functionality such as the ability to expose content based on
the location of the mobile device. Other uses unique to a mobile device environ-
ment will soon emerge, such as

• Scanning bar codes and comparing prices at competing merchants on
demand

• Receiving notification when a client or coworker is nearby

• Receiving alerts about new real estate properties immediately as they
become available

• Recording pictures and/or videos of crime or accident scenes and transmit-
ting them in real-time

Creating an enterprise mashup infrastructure for unique mobile device capa-
bilities must facilitate dynamic data transformation, enrichment, and integra-
tion suitable for mobile platforms. Equally important is the need for UI artifacts
tailored to fit the small display footprint offered by mobile devices.

Another aspect of mobile-device aware mashup infrastructures is the need to
provide APIs that support the semantic nature of the latest web technologies.
This includes APIs supporting Atom, RSS, REST, AtomPub, and RDF.

Other considerations that should be addressed by an enterprise mashup
infrastructure that is mobile-device friendly are

• Location-based access and services

• Open, yet secure enterprise-based connections or graphs

• Support for standards such as OpenSocial, microformats, and DataPortability

• Taxonomies providing contextual services enabling intelligent location-
based services and/or client-aware, preference-based services

• Sophisticated authentication and authorization frameworks supporting
mobile-device platforms

• Integration with functionality such as calendar events and contact
management

From the Library of John Jeffrey Hanson

ptg31978834

MOBILE AND SDK-RELATED MASHUPS 333

The diagram in Figure 9.3 illustrates some of the possible integration points
for a system operating within a mashup infrastructure that exploits mobile plat-
form APIs.

As shown in Figure 9.3 mobile platform APIs within a mashup infrastructure
present just as many and most likely more possibilities than a browser-aware
infrastructure.

The following sections discuss a few of the most widely used mobile plat-
forms and how they can be applied to a mashup infrastructure.

Android Platform

The Android platform is based on the Linux kernel and includes a collection of
mobile device software components including SDKs, a virtual machine, support
for audio and video media, a scaled-down implementation of SQL, and others.
The Android platform is actively developed by a group of technology and
mobile companies, specifically, the Open Handset Alliance, which includes
Google, Intel, Motorola, Samsung, T-Mobile, and others. The goal of this alli-
ance is to create a complete, free, and open mobile platform. The alliance pro-
vides a software development kit (SDK) to be used to develop applications.

Figure 9.3 The integration possibilities provided by mobile platforms and an
enterprise mashup infrastructure

Windows
Mobile

Platform
Java J2ME Geocoding

Service

LinkedIn

CRM
System

Sales
Report

Plaxo Amazon

Enterprise
Mashup

Infrastructure

HTTP/
HTTPS

Local
Database

Android
Platform

CRM
System

Sales
Reports

iPhone
Platform Twitter

Enterprise
Mashup

Infrastructure

HTTP/
HTTPS

Local
Database

From the Library of John Jeffrey Hanson

ptg31978834

334 CHAPTER 9 MASHUP FORECASTS AND TRENDS

Applications are written to the Android platform using the Java program-
ming language and run on the Android virtual machine, which sits atop a Linux
kernel.

The diagram in Figure 9.4 illustrates the architectural stack of components
and frameworks of the Android platform.

As shown in Figure 9.4 the components and frameworks that embody the
architectural stack of the Android platform are similar to any well-designed,
decoupled platform with one or more layers between application development
code and the machine.

Building a mashup application or service on top of the Android platform
stack will most likely materialize as an aggregate of services and components
from the Applications layer and the Applications Framework layer of the
Android platform stack, as shown in Figure 9.4.

Figure 9.4 The architectural stack of components and frameworks of the Android
platform

Mail Calendar Contacts

Activity
Manager

Window
Manager

Content
Providers

View
System

Notification
Manager

Display
Driver

Camera
Driver

Flash Memory
Driver …

Keypad
Driver WiFi Driver

Audio
Drivers

Power
Manager

Surface
Manager

Media
Framework SQLite OpenGL

Core libs

VM
SGL SSL libc …

Package
Manager

Telephony
Manager

Resource
Manager

Notification
Manager

…

… Browser Maps

Mashups

Applications

Libraries Runtime

Application Framework

Linux Kernel

Mashup
Service/App

From the Library of John Jeffrey Hanson

ptg31978834

MOBILE AND SDK-RELATED MASHUPS 335

The Android SDK includes the Android framework, application libraries,
sample applications, a device emulator, a debugger, and monitoring tools.

All Android applications are based on an assortment of frameworks and ser-
vices, including

• An extensible collection of UI artifacts called Views that includes an
embeddable browser, text boxes, lists, grids, and buttons

• Data hosting components called Content Providers that enable applica-
tions to access data from other applications (such as Contacts), or to share
their own data

• A resource manager that facilitates access to external files containing data
and content such as XML files, images, and layout templates used by
application code

• A notification manager for displaying status bar alerts

• A lifecycle management component called the Activity Manager that man-
ages application lifecycle and navigation backstack

The currently available Android-powered phone comes with several preloaded
Google applications including Gmail, Gmail contact management, Google Search,
Google Maps, Google Calendar, YouTube, and Google Talk.

Many of the Google applications preloaded on the phone such as Google
Talk, Gmail, and Google Calendar are synchronized to a high degree with cor-
responding web browser applications from Google. This enables items updated
on a web browser application to be pushed to the phone in real-time and items
updated on the phone to be made immediately available to web applications.

In addition to features and functionality typically found in a Google applica-
tion environment, several enhancements have been added to take advantage of
the integrated environment in which Android applications execute. For exam-
ple, Google Search can be invoked instantly to find information about data
contained in many applications as they are running.

iPhone OS

The iPhone from Apple is a mobile device enabled with web browsing capabili-
ties, an application execution environment, and mobile phone functionality.
The iPhone is built on an operating system and technologies run natively on the
iPhone and other compatible devices. The iPhone operating system shares many
foundational concepts and technologies with Mac OS X, although the iPhone
OS is optimized for a mobile environment. This similarity with Max OS X

From the Library of John Jeffrey Hanson

ptg31978834

336 CHAPTER 9 MASHUP FORECASTS AND TRENDS

makes developing applications for the iPhone familiar to existing Mac OS X
developers. Some concepts are unique to the iPhone environment, such as a
multitouch interface, a smaller graphical display, autorotation, and the iPhone
accelerometer (iPhone’s technology for measuring acceleration and gravity-
induced forces), which need to be addressed when developing for the iPhone.

Figure 9.5 illustrates the architectural stack of components and frameworks
of the iPhone OS platform.

As shown in Figure 9.5 the architectural stack of the iPhone platform is
abstracted in several layers allowing development tasks to be targeted at only
the specific level providing the functionality needed for a given application or
service.

Figure 9.5 The architectural stack of components and frameworks of the iPhone OS
platform

File
Management

Address
Book UI

2D 3D Drawing Audio

POSIX
Threads

UNIX
Sockets Networking …Security

Bonjour Config SQLite OpenGL Location

EventsInternationalization
Resources

Access Preferences

Video OpenGL ES Quartz Animation

UIKit …

Mashups

Cocoa Touch

Services

iPhone OS Kernel

Media

Mashup
Service/App

From the Library of John Jeffrey Hanson

ptg31978834

MOBILE AND SDK-RELATED MASHUPS 337

Building a mashup application or service on top of the iPhone platform will
most likely emerge as a combination of services and components from the
Cocoa Touch layer, the Media layer, and the Services layer of the iPhone plat-
form stack, as shown in Figure 9.5.

The iPhone SDK includes sample code as well as tools for building, testing,
executing, and debugging applications for the iPhone.

Currently you must develop applications for iPhone within the Xcode envi-
ronment on a Mac OS X computer using C or Objective-C. Xcode is Apple’s
integrated development environment shipped with every copy of Max OS X. A
graphical workbench is included with Xcode. This workbench includes a text
editor, an integrated build system, a debugger, and a PowerPC compiler. A tool
called Interface Builder where you can assemble and connect UI components for
an application is also provided.

The Xcode environment now includes support for developing and testing
iPhone applications. An iPhone simulator that works in conjunction with an
iPhone or compliant device to test such items as multitouch and accelerometer
functionality is presented with Xcode.

Windows Mobile

The Windows Mobile operating system includes a number of applications for
mobile devices. Devices such as Pocket PCs and Smartphones can run the Win-
dows Mobile OS. The development platform is based on Microsoft’s Win32
API. The operating environment for Windows Mobile includes many of the
same concepts as desktop environments built on the Win32 API. The current
version of Windows Mobile is Windows Mobile 6.1.

A number of options exist for developing a Windows Mobile application or
service. These options include writing to native code with Visual C++, writing
to the Common Language Runtime environment using managed code within
the .NET Compact Framework, or writing browser-based code that operates
within Internet Explorer Mobile.

A subset of the .NET Framework, the .NET Compact Framework shares
several concepts and components with the .NET Framework and, therefore,
many of the features of a Windows desktop application environment.

Along with the .NET Compact Framework, you can also develop managed
applications for Windows Mobile-based Pocket PC and Smartphone devices
using the Windows Mobile SDK. The SDK includes managed classes giving you
access to a device’s system configuration and management services.

You can write to the Windows Mobile native APIs when you want high per-
formance. Development at this layer is facilitated using Visual C++ to access the
Win32 libraries and the MFC and ATL frameworks.

From the Library of John Jeffrey Hanson

ptg31978834

338 CHAPTER 9 MASHUP FORECASTS AND TRENDS

Visual Studio is the typical development environment for Windows Mobile
application and service development. Visual Studio includes the Windows
Mobile SDKs and emulators.

The diagram in Figure 9.6 illustrates the architectural stack of components
and frameworks of the Windows Mobile platform.

As shown in Figure 9.6 the architectural stack of the Windows Mobile plat-
form is abstracted in several layers allowing development to target specific
functionality to meet the needs of each application or service.

Java J2ME

Java 2 Micro Edition (J2ME or Java ME) is an environment for running appli-
cations on mobile devices and embedded devices. Java ME includes support for
standard network protocols and for building secure, graphical applications that

Figure 9.6 The architectural stack of components and frameworks of the Windows
Mobile platform

Mashups

… GDI
Data and

XML
Windows

Form

Garbage
Collector

Common
Type System …

Thread
Management

… Streams STL Strings

Contacts Email Calendar

Mashup
Service/AppApplications

.NET Compact Framework

Common Language Runtime

Native Libraries

Device OS

From the Library of John Jeffrey Hanson

ptg31978834

MOBILE AND SDK-RELATED MASHUPS 339

can be installed to a device on demand. Applications built with Java ME can be
installed and executed on many different devices.

Java ME technologies are designed to operate within environments that have
limited display space, memory, and capacity for power. The Java ME develop-
ment platform provides a set of technologies and standards specifically created
for building applications and services to operate on such devices.

The Java ME platform directs application development towards building on
a configuration layer providing a virtual machine with a core set of libraries, a
profile layer providing more specific APIs, and an application layer providing
more specific APIs.

The diagram in Figure 9.7 illustrates the architectural stack of components
and frameworks of the Java ME platform.

As shown in Figure 9.7 the architectural stack of the Java ME platform is
abstracted in several layers that allow an application, service, or mashup to
take advantage of each layer as needed.

Figure 9.7 The architectural stack of components and frameworks of the Java ME
platform

Mashups

…
Foundation

Profile
Personal
Profile MIDP

Garbage
Collector

Class
Loaders Streams Security …

Connected Device Configuration
(CDC)

Connected Limited Device
Configuration (CLDC)

Contacts Email Calendar

Mashup
Service/AppApplications

Profile Layer

Configuration Layer

Java ME

From the Library of John Jeffrey Hanson

ptg31978834

340 CHAPTER 9 MASHUP FORECASTS AND TRENDS

The Connected Limited Device Configuration (CLDC) shown in Figure 9.7
is provided for building applications for small, limited devices, and the Con-
nected Device Configuration (CDC) shown in Figure 9.7 is provided for build-
ing applications on more powerful devices.

Business Process Management for Mashups

Business process management (BPM) typically defines a set of processes that
direct organizations towards optimizing business execution. BPM helps to ana-
lyze, organize, and automate business processes, practices, and systems towards
success.

Current business operations must be ready to deal with multiple standards,
increased automation, and more complex technologies delivering large assort-
ments of data from disparate sources. BPM deals with integration of data from
these disparate sources using various access mechanisms where the data can
then be analyzed and operated on. Adding service-oriented techniques based on
semantically rich technologies to this data-intensive atmosphere creates a prime
environment for building data and process-driven mashups. The very definition
of BPM within this setting might even be considered a mashup by itself.

BPM typically exposes key performance indicators (KPIs) that organizations
use to manage and monitor project efficiency. Adding a mashup infrastructure
to today’s BPM state of affairs can expand the definition of BPM to include
processes that were prohibitive in the past.

Many mashups already facilitate ad hoc integration practices with data
sources, processes, and systems. BPM systems built on a mashup infrastructure
can direct these processes with tools and technologies that are guided within the
constraints and governance rules for a given industry or organization.

Figure 9.8 illustrates how a mashup infrastructure might facilitate BPM
activities across an organization’s many systems and disparate data sources.

Figure 9.8 illustrates how an enterprise mashup infrastructure can act to
bind together data sources and systems to create an effective BPM framework.

Enterprise mashups promise to aid BPM systems towards orchestrating sys-
tems and processes by integrating data and services with semantic technologies
and interactive tools. As modern security standards are embraced across the
enterprise, more and more organizations will begin to involve external services
and data sources in their BPM efforts. Mapping sites will be used to provide
location-specific content to BPM dashboards. RSS feeds can be accessed to pro-
vide up-to-date feedback from customers and about the competition. More uses
will be found on an exponential basis as aggregate services emerge.

From the Library of John Jeffrey Hanson

ptg31978834

DESKTOP/WEB HYBRID MASHUPS 341

Desktop/Web Hybrid Mashups

While mashups are conventionally thought of in terms of a web browser, other
environments are starting to appear. Mobile phones, talked about earlier, are
ripe for mashup applications. The desktop is another area that mashups will
surely begin to play.

The following sections discuss some of the technologies and platforms avail-
able for building applications that lend themselves to a mashup application
development environment for the desktop.

Adobe AIR

Adobe AIR is a runtime environment that includes the open source web
browser engine, WebKit, and the Adobe Flash engine. This environment enables
developers to use web technologies such as HTML, JavaScript, Flash, or Flex to
build rich Internet applications that run on the desktop.

The Adobe AIR runtime provides AJAX technologies to allow AJAX develop-
ers to build rich Internet applications (RIAs) that can be delivered with a single

Figure 9.8 Business process management operating within an enterprise mashup
infrastructure

Web Browser

Web Page

On-demand JavaScript

HTML
Snippet

Gadget

Widget Widget

Business Process Lifecycle

Process
Execution

Service

Business
Activity

Monitoring
Service

Reporting
Service

Enterprise
Mashup

Infrastructure

metrics,
KPIs,

events,
config changes

Message
Queue

BPEL

From the Library of John Jeffrey Hanson

ptg31978834

342 CHAPTER 9 MASHUP FORECASTS AND TRENDS

installation file to execute within the WebKit browser engine across multiple
operating systems.

Adobe AIR’s runtime also allows developers to use Adobe Flex to use exist-
ing tools and code to build rich desktop applications that expand on the experi-
ence of a web browser by adding access to local resources.

Adobe Flash CS3 Professional can be used to build RIAs that execute within
the Adobe AIR runtime environment on the desktop. As with Flex and Adobe
AIR, Flash can be used to access local resources to enhance the experience of a
web browser application.

With Adobe AIR, you can expand your mashup infrastructure to the desktop
to establish a more direct connection with existing customers. You can also
deliver a more branded application using desktop features.

Google Gears

Google Gears is an open source project that acts as a browser extension to
enable developers to create web applications that can interact with a desktop
via JavaScript APIs.

Google Gears allows you to store and access data locally from within a web
browser. A local server that acts as a mechanism to serve cached web resources
is provided by Google Gears as well as a worker-thread pool that enables back-
ground processing. A geolocation API is also provided by Google Gears to pro-
vide access to the geographical location of the host device.

The underlying security model of Google Gears is based on the same-origin
policy to restrict a Gears application to accessing resources based on a given
scheme, host, and port. This security model constrains a Gears application to
storing and accessing data within a database created for a given site’s origin.

Windows Gadgets

Windows Gadgets are small programs that are installed and executed in a Win-
dows environment. Windows Gadgets can execute in undocked mode or
docked within the context of a Windows Sidebar. Windows Sidebar is a tool
provided by the Vista operating system as a means to organize gadgets.

Gadgets enable developers to write mini applications using web technologies
such as HTML and JavaScript to receive notifications, access web resources,
show photo albums, and perform other tasks.

Windows Gadgets installed on a given Windows system can be selected from
a palette and placed on the Windows Sidebar in drag-and-drop fashion.

From the Library of John Jeffrey Hanson

ptg31978834

SUMMARY 343

Summary

Mashup environments offer enterprises powerful opportunities and tools for
integrating data and systems in daily business operations. Using this power and
functionality intelligently as a tool for integration can be cost effective for an
organization. Exploiting the agile and dynamic nature of a mashup infrastruc-
ture to achieve strategic objectives can increase ROI and prove to be profitable
for an organization over time. A mashup infrastructure enables an organization
to realize reduced development and maintenance costs for applications and sys-
tems. A mashup environment enables services and applications to be created by
business-savvy users who may lack low-level technical skills. Mashup artifacts
such as widgets, semantic data, and business services can be reused by business
users and domain experts within an organization as well as by strategic partners.

Enterprise mashups are proving useful in many everyday business situations.
In this chapter I discussed some of the trends that enterprise mashups are likely
to follow as well as some of the scenarios in which mashups are currently being
used, such as social networks, and some in which mashups are likely to emerge,
such as mobile devices.

This book discussed some of the concepts of mashups as applied to an enter-
prise environment. Discussions throughout the book expanded on these con-
cepts to guide you through the design and implementation of enterprise
mashups and enterprise mashup infrastructures.

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

345

Appendix

Mashup Servers,
Technologies, APIs, and Tools

Tools and APIs for mashups are emerging at an astounding rate. Most pro-
gramming languages are being supported in some form in the mashup arena.

The following sections discuss some of the current servers, technologies,
APIs, and editors available today for mashup development and deployment.

Mashup Servers

The definition of a mashup server can mean different things depending on the
context. A server can be deemed a mashup server simply by offering an environ-
ment in which UI artifacts can be combined to form aggregate user interfaces.
See Chapter 1 for a more complete definition of a mashup server.

Mashup servers in this context are technologies offering an environment that
enables users to build mashup applications, services, and artifacts from dispar-
ate data sources and service providers.

The following discusses some of the more prominent mashup server environ-
ments available at the time of this writing.

Presto Mashup Server

The Presto Mashup Server (http://www.jackbe.com) is an enterprise mashup
server that provides users with access to disparate data from such sources as
internal and external services and relational databases.

Presto’s Mashup Server converts services into “virtual services” that are
mashup-ready and easy for end users to use in mashup applications. While pro-
viding access to these virtual services, the Presto Mashup Server also attempts
to allow IT to govern, secure, and manage enterprise infrastructure and data
assets.

From the Library of John Jeffrey Hanson

http://www.jackbe.com

ptg31978834

346 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

Specifically, features reportedly enabled by Presto Server’s service virtualiza-
tion include

• Easy information access—The Presto Mashup Server is touted as empow-
ering business users with easy access to vital information.

• Real-time decision making—The server attempts to help users locate,
access, and integrate data according to changing business needs.

• Collaboration and information sharing—Sharing of mashups through
trusted collaboration between users and partners is another primary fea-
ture exposed.

• Governance and security—Presto’s server seeks to ensure that mashups
meet enterprise governance and security requirements.

The Presto Mashup Server attempts to shift control of the business use of IT
assets towards business experts while maintaining centralized governance of the
assets.

All the Presto mashup products are enabled with the Enterprise Mashup
Markup Language (EMML). EMML is a JackBe-specific, XML-based domain
specific language intended for creating mashup applications and artifacts.

Presto Mashup Server relies on three implementation environments:

• Presto Mashlets enable mashup building using widgets. Once a mashlet is cre-
ated it can be used anywhere typical widgets are used, including a desktop.

• Presto Wires, a web browser-based visual mashup composition tool allows
users to consume and combine data from disparate data sources.

• Presto Mashup Studio is an Eclipse plug-in that enables Java programmers
to design, test, debug, and deploy mashups. Developers use Presto Studio
to write mashups with EMML and debug using Eclipse.

WSO2 Mashup Server

The WSO2 Mashup Server (http://wso2.org/projects/mashup) is a mashup plat-
form for creating, deploying, and consuming mashup applications and services.
The WSO2 Mashup Server provides support for

• Consuming and deploying services using dynamic scripting languages

• Simple deployment and redeployment; automatic and UI-based generation
of web services artifacts (for example, WSDL, schema, policy)

From the Library of John Jeffrey Hanson

http://wso2.org/projects/mashup

ptg31978834

MASHUP SERVERS 347

• A set of gateways into a variety of information sources, including SOAP
and POX/REST web services, and web pages

• Easily orchestrated UI artifacts via a variety of user interfaces including
web pages, portals, email, Instant Messenger service, and Short Message
Service (SMS)

The WSO2 Mashup Server lists the following features:

• Hosting of mashup services written using JavaScript with E4X XML
extension

• Simple file-based deployment model

• JavaScript annotations to configure deployed services

• Autogeneration of metadata and runtime resources for deployed mashups

• JavaScript stubs that enable client access to the mashup service

• TryIt feature to invoke the mashup service through a web browser

• WSDL 1.1/WSDL 2.0/XSD documents to describe mashup services

• Ability to provide a custom user interface for mashups

• Many JavaScript Host objects that can be used when writing mashups,
including:

WSRequest—Invokes web services from mashup services

File—File storage/manipulation functionality

System—A set of system specific utility functions

Session—Provides the ability to share objects across different service
invocations

Scraper—Enables extracting data from HTML pages and presenting in
XML format

APPClient—Atom Publishing Protocol client to retrieve/publish Atom
feeds with APP servers

Feed—A generic set of host objects to read Atom and RSS feeds

• Support for recurring and longer running tasks

• Management console to manage mashups

From the Library of John Jeffrey Hanson

ptg31978834

348 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

• Sharing of deployed mashups with other WSO2 Mashup Servers

• Mashup sharing community portal (http://mashups.wso2.org) to share
and host your mashups

The WSO2 Mashup Server supports the creation of web services written in
JavaScript. The Mashup Server takes JavaScript files, placed in a local directory,
and exposes the functions as web service operations. Web services can also be
created using a provided wizard.

Kapow Mashup Server

The Kapow (http://www.kapowtech.com) product offering falls into two sub-
scription-based categories: on-demand and on-premise. Determining which
product fits your needs depends largely on the type of issues you are dealing
with, what data sources you need to integrate with, and what the target appli-
cation is for the data that you collect.

The following sections discuss the Kapow offerings.

On-Demand Service
Kapow OnDemand is a web-hosted, subscription-based service that enables
automated collection of web-based information and data. The web content that
you harvest can be integrated into existing applications and/or infrastructures.

This service is particularly well-suited for business experts who have a need
to integrate web-based data into business processes and analyses in real-time.
Using the Kapow Connector for Excel, web data can be collected and inte-
grated, on-demand into a spreadsheet.

Kapow OnDemand provides ancillary utilities, which includes a Kapow-specific,
Robot Development Environment to construct custom feeds and services, a
role-based execution runtime, and an environment to monitor and manage
your portfolio of services and feeds.

On-Premise Enterprise Server Environment
There are several editions of the Kapow Mashup Server, each of which is
designed to support a different style of web data harvesting and use. However,
all editions of the Kapow Mashup Server provide the same environment for
execution, management, and monitoring of users’ service robots.

Offerings other than the hosted Kapow OnDemand product are collectively
referred to as Enterprise products. Enterprise products are installed and man-
aged by Kapow customers at the customers’ sites. The Enterprise Server envi-
ronment supports multiple user communities and is typically installed on a
single server.

From the Library of John Jeffrey Hanson

http://www.kapowtech.com
http://mashups.wso2.org

ptg31978834

MASHUP SERVERS 349

A Kapow Enterprise Server can be configured as a stand-alone execution
environment, or as multiple concurrent robot execution instances.

The following is a breakdown of the Kapow Enterprise Server editions:

• Data Collection Edition—Allows you to access multiple data types, using
a visual scripting environment. Web content and data collected can then be
written to a database, published as a web service, or transformed for use
by other applications. Java and C# APIs are provided to drive the execu-
tion of robots.

• Web 2.0 Edition—Allows you to create an RSS feed from ordinary web
sites and to add the feed to an RSS reader.

• Portal Content Edition—A development environment that interacts with
portals via the web interface. This edition does not require a proprietary
portlet development container or environment.

Control Center
Management and monitoring of a Kapow Enterprise Server are facilitated by
the Kapow Control Center, which provides the following capabilities:

• Monitoring and stopping the robot execution environment

• Starting, stopping, and monitoring of one or more robots

• Performing various administrative tasks and gathering of runtime perfor-
mance statistics

The Kapow Control Center allows you to monitor components and other
resources running on a server, manage performance bottlenecks, and start or
stop robot instances.

Robot Development Environment
The robot development environment for Kapow Enterprise products allows
robots to be designed using a visual scripting model. The robot designer enables
you to build robots that automatically harvest web content delivered to a desk-
top or application.

The robot development environment in the Enterprise products supports a
wider range of styles of web harvesting and different ways to use the data once
it’s been harvested.

Examples of product-specific additional functionality supported in the robot
development environment for Enterprise products include the following:

From the Library of John Jeffrey Hanson

ptg31978834

350 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

• Ability to clip one or more partial or full pages to harvest content that can
be deployed as a portlet to portal servers such as IBM, BEA, and Oracle

• Directly read and write to SQL databases

• APIs for invoking robots as SOAP services from Java or .NET applications

• Creation of complex name/value pair data models and the ability to create
composite data objects by combining data harvested from databases and
other web data sources

While robots used in the OnDemand product can be designed by less techni-
cal individuals, robots designed for use with the Enterprise product typically
require an individual with a more technical level of skills.

Choosing a Kapow Product
Table A.1 shows a comparison of Kapow products.

Table A.1 Kapow Product Comparison

Portal Content
Edition

Data Collection
Edition

Web 2.0
Edition

Kapow
OnDemand

Data sources Public or private
web

Public or private
web, internal
databases

Public or private
web

Public web

Data consumers Portals Databases, web
applications, Java
& .NET tools,
mashup modelers

Excel, web
applications,
mashup modelers

Excel, web
applications,
mashup modelers

Portal
consolidation/
extension

X

Mobile
enablement

X X

Harvesting to a
database

X

Large-scale batch
collection

X

Desktop web
harvesting to
Excel

X X

Syndicating data
as a service

X X

Data or content
migration

X

Hosting
environment

On-premise On-premise On-premise Kapow hosted

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP TECHNOLOGIES AND TECHNIQUES 351

Noting the preceding product comparison, the OnDemand service is the
applicable choice when you need to collect data from the public web on a real-
time basis that you intend to integrate directly into environments and applica-
tions capable of consuming XML. This is also the right choice for organizations
that have limited IT proficiency and infrastructure and want to focus on the
harvesting of web data without having to deal with the implementation and
maintenance of an underlying software infrastructure.

Enterprise Products are a better choice when you’re collecting large volumes
of data from the web that is to be written to a database, published to a portal,
or combined with other data sources.

Mashup Technologies and Techniques

Mashup development encompasses a wide range of languages, data formats,
techniques, and technologies. The following sections discuss some of the most
used within the current mashup arena.

HTML/XHTML

XHTML (eXtensible HyperText Markup Language) is a standard introduced in
2000 to form an integration of XML and HTML. XHTML embodies a web
development language with a stricter set of constraints than traditional HTML.

Software
infrastructure &
administration

Customer
provided runtime
environment

Customer
provided
runtime
environment

Customer
provided runtime
environment

Kapow provided
(failover, backup,
restore, restart,
web UI)

Data model
complexity

This is a web
clipping product.
Data models not
applicable.

Very complex
data modeling.
No limitation on
number of name/
value pairs.

Moderately
complex data
modeling. Limit
of 25 name/value
pairs.

Moderately
complex data
modeling. Limit
of 25 name/value
pairs.

Robot types Clipping,
integration

Data collection,
integration

REST/RSS/Atom REST/RSS/Atom

APIs supported HTTP(S) Java, .NET,
SOAP, HTTP(S)

HTTP(S) HTTP(S)

Robot execution
styles

Real-time Batch or
real-time

Real-time Real-time

Table A.1 Kapow Product Comparison (Continued)

Portal Content
Edition

Data Collection
Edition

Web 2.0
Edition

Kapow
OnDemand

From the Library of John Jeffrey Hanson

ptg31978834

352 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

An XHTML document must be structured as a well-formed XML document.
This means that the document must have one and only one root element (the
<html> element), and all elements within an XHTML document must be closed,
named with all lowercase characters, and properly nested. All attributes within
the document must be in lowercase as well. An XHTML document must have a
<!DOCTYPE ...> declaration.

The example in Listing A.1 illustrates a simple, valid XHTML document.

Listing A.1 A Simple XHTML Document
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <p>Hello world!</p>
 </body>
</html>

The example in Listing A.1 is a typical HTML document. However, it is also
a valid XHTML document since the DOCTYPE declaration is present and all ele-
ments are closed, as shown.

The importance of XHTML to a mashup environment is seen most signifi-
cantly in the XHTML extension model defined by the XHTML Modularization
specification. The XHTML Modularization specification provides definitions
for such things as forms modules, iframe modules, scripting modules, and oth-
ers. This enables efficient use of profiles to create subsets of XHTML for such
things as mobile devices and semantically robust web pages and applications.

XML

XML is a general-purpose markup language for representing data. Data for-
matted as XML is easy for humans to read and understand. XML data is easy
to transform into other formats using tools available in nearly every program-
ming language. XML supports schema-based validation and is supported by
many formal enterprise data format standards. Internationalization is sup-
ported explicitly with XML, and XML is platform and language independent
and extensible.

XML is strictly a data markup specification and is verbose. It does not seek to
integrate with any one programming language intrinsically via support for primi-
tives, arrays, objects, and so on. Therefore, a distinctly separate process typically
occurs between serializing XML data to and from the programming language.

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP TECHNOLOGIES AND TECHNIQUES 353

XML is great for describing data in a human-readable manner and is a great
format for serializing and transporting entire documents, and many specifications
for business have mandated some dialect of XML as the payload format. Since
XML was gaining such popularity as a universal document model, it seemed
natural to design serialization techniques and technologies for it. XML begins
to approach semantic meaning within data and documents using namespace
context and metadata. For XML data to effectively embody semantic meaning,
additional context must be applied in the form of such technologies as XSLT.

Even though XML is great for applying semantics to data and documents, it
is not easily applied to programming language constructs. Mashups deal with
data in smaller chunks, primarily from scripting languages running in a
browser, and as such, XML was found to be a difficult fit at times.

Plain old XML (POX) is the name often given to XML when referring to it
as a data-serialization format. POX was the original data format for which
AJAX was developed. However, it was soon discovered that there was a need to
reduce the size of payloads transported from browser to server and back. It was
also apparent that more efficient techniques were needed to integrate payload
data with scripting languages. JSON was developed to meet this need and is
gaining widespread use and popularity.

AJAX

Asynchronous JavaScript and XML (AJAX) is a set of technologies and tech-
niques that enable two primary web development functions: handling client/server
requests and responses from within a browser page and manipulating the browser
DOM to create dynamic user interfaces with a responsive look-and-feel, such as
updating a UI artifact on a web page without refreshing the entire page.

AJAX is built on an HTTP communication mechanism from browser-to-
server and back again that operates outside the normal user-instigated request/
response process. This ability coupled with dynamic DOM manipulation tech-
niques enables you to build richer web pages than traditional methods because
it allows you to place a higher degree of application logic in the web page.

AJAX techniques enable a UI experience that can be much more responsive
than typical HTML. However, AJAX presents a number of advantages and dis-
advantages for which you must be prepared.

Following are some advantages of using AJAX:

• Enables a communication model with a server using XML as the primary
payload.

• Enables a more responsive UI due to being able to process small units of
data at a time.

From the Library of John Jeffrey Hanson

ptg31978834

354 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

• Content can be retrieved via multiple connections, thereby possibly speed-
ing up the retrieval process.

• Parts of a page can be updated in isolation to other parts, thereby reducing
entire page problems due to an error in one section of the page.

• Bandwidth usage can be decreased since only small chunks of data from
specific parts of a page can be transferred at any given time.

Following are some disadvantages of using AJAX:

• AJAX frameworks, technologies, and techniques are not yet as mature as
traditional methods.

• Browser support for AJAX is not quite as secure as traditional methods.

• AJAX requires a more technical programming mindset than traditional
web development methods, thereby raising personnel costs and reducing
the size of the possible talent pool.

• The AJAX UI model conflicts with the browser’s random Back button and
Forward button navigation style, often leading to a confused user experience.

• Since AJAX depends on dynamic data retrieval and UI construction,
search engines cannot process the content as effectively.

• The XMLHttpRequest object that AJAX depends on for its browser-to-server
communication is subject to the browser security sandbox. Therefore,
communication to a host other than the originating host is restricted.

• AJAX typically uses DOM-manipulation techniques to create dynamic UI
effects. Although DOM-manipulation is becoming more consistent across
browsers, there are still inconsistencies. You must be sure that the tech-
niques you use in your mashup are consistent across all your targeted cli-
ent execution environments.

• Request and response messages passing between client and server via the
XMLHttpRequest object are obtained using different JavaScript methods
depending on whether the browser is Microsoft-based (Internet Explorer).
However, most AJAX libraries address this difference already.

• The use of the XMLHttpRequest object implies the need for JavaScript being
enabled by the client execution environment. While this is generally the
case, some execution environments and/or companies do not or will not
allow JavaScript. Also, some search engine technologies will not pick up
content semantics effectively if they are embedded within JavaScript code.

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP TECHNOLOGIES AND TECHNIQUES 355

• The dynamic UI effects created by the use of DOM manipulation tech-
niques can also wreak havoc on bookmarking and use of the Back or For-
ward button in a web browser. One of the effects enjoyed by the use of
AJAX is a more desktop-like look-and-feel. However, the fundamental
paradigm of the web browser is to allow unstructured browsing with the
ability to go forward and backward with regards to your browsing history.
Browsing history and AJAX execution history are usually unsynchronized,
leading to confused users if not handled effectively.

• Since AJAX can execute requests asynchronously in the background, it is
important to keep the user engaged and updated as background processes
execute. This typically involves the use of UI controls such as progress bars
and status dialogs to inform the user of the progress of these processes.

Even though the AJAX disadvantages in the preceding list are more numer-
ous than the advantages, each advantage can be vitally important to an organi-
zation and, therefore, outweigh all the disadvantages on its own. For example,
a UI that is more responsive and mimics a desktop application can mean the
difference between success and failure for a site.

Screen Scraping

Screen scraping is the process of manually parsing the content of a site page,
extracting the desired data from the page, and applying the data to your page or
process. Once the data has been parsed and extracted, it is refactored into data
structures that fit the semantics of your business and development environment.
An example would be a mashup that uses publicly available data from govern-
ment sites in concert with geographical or geopolitical data to create a site
exposing high crime areas or to show trends in housing prices.

Screen scraping is usually used on a temporary basis, since there is no con-
tract relating to programmatic access in place to ensure the prolonged consis-
tency of the site. As a result, it is a fragile mechanism and must be constantly
monitored to address changes that are bound to occur in the structure and/or
availability of the page or site.

REST

REST (Representational State Transfer) is a model for interaction with
resources based on a common, finite set of methods. For the HTTP protocol,
this is embodied by the methods GET, POST, PUT, DELETE, and sometimes HEAD. In a
REST-based application or interaction, resources are identified by a URI. The
response for REST-based invocation is referred to as a representation of the
resource.

From the Library of John Jeffrey Hanson

ptg31978834

356 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

REST is often realized using HTTP methods in the following manner:

1. Create the resource (PUT).

2. Retrieve a representation of the resource (GET).

3. Delete the resource (DELETE); modify the resource (POST).

4. Retrieve metadata about the resource (HEAD).

A resource in REST is regarded as any entity that can be directly referenced
with a URI. Using this definition, anything that can be retrieved using a URI
can be considered a resource. What an underlying infrastructure does to create
the resource representation is of no concern to the resource consumer as long as
the interface depicts a discrete and concrete chunk of data.

RDF

The Resource Description Framework (RDF) standard is built on the notion
that all resources are to be referenced using URIs. RDF also attempts to pro-
mote semantic meaning to data. This idea is central to the mashup environ-
ment, where data is a collection of loosely coupled resources. With respect to
this knowledge, RDF makes a great fit as a universal data model for the data
layer of your mashup infrastructure.

RDF describes data as a graph of semantically related sets of resources. RDF
describes data as subject-predicate-object triples, where a resource is the subject
and the object shares some relation to the subject. The predicate uses properties
in the form of links to describe the relationship between the subject and object.
This interconnecting network of resources and links forms the graph of data
that RDF seeks to define.

Using URIs to expose access to your resources and using RDF to create the
graph of relationships between resources makes RDF a natural choice for a uni-
versal data format.

RSS and Atom

RSS and Atom are XML-based data formats for representing web feeds such as
blogs and podcasts. RSS and Atom are ideally suited for representing data that
can be categorized and described using channels, titles, items, and resource
links. An RSS or Atom document contains descriptive information about a feed
such as a summary, a description, the author, and the published date.

The same disadvantages are shared with RSS, Atom, and XML. RSS and
Atom are primarily focused on representing resources and feed data. However,
both formats are being adopted for more general purpose needs. RSS and Atom

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP TECHNOLOGIES AND TECHNIQUES 357

address semantic meaning by describing resources and other entities using stan-
dard tags that explicitly define the purpose of each particular element, for
example, title, creator, and published date.

Feed readers that consume RSS and Atom are used to enable a model in
which users subscribe to feeds/blogs that will be periodically queried by the
readers. The readers then display a brief summary of the feed/blog content to
the user. This makes an effective means for receiving updates for content of
interest to a user.

Mashups often use RSS feed data as content and as a means for obtaining
summary information about a given topic or entity to add value to the content.
This process requires the ability to parse the feed data using XML-parsing code,
often in JavaScript. Mashups also embed RSS and Atom readers in the page as a
widget, gadget, badge, or other small component.

RSS is a good format for representing simple, categorized, dated textual
data. RSS data is easily consumable using standard XML tools. Also, many spe-
cific RSS libraries and tools are available in most programming languages.

RSS has a number of benefits including the ability to aggregate content easily
from multiple RSS data sources.

JSON

JSON (JavaScript Object Notation) is a JavaScript data format that is a subset
of the JavaScript programming language and offers the advantage of easy acces-
sibility and parsing from within a JavaScript environment. JSON supports a
limited number of simple primitive types allowing complex data structures to
be represented and consumed easily from standard programming languages.

Namespaces and schema-based validation are not supported by JSON, and
JSON is not accepted by nearly as many formal enterprise data format stan-
dards as XML. JSON is a semantically challenged approach to data exchange,
relying on tight couplings between data producer and data consumer to form
an understanding of the data. However, where JSON lacks in semantic richness,
it makes up for it in data terseness.

One can embody simple data structures with a limited set of primitives using
JSON. Objects can also be represented with JSON as associative arrays.

JSON supports a limited number of simple primitive types allowing complex
data structures to be represented and consumed easily from standard program-
ming languages.

On-Demand JavaScript

On-demand JavaScript is a technique in which a <script> tag and its accompany-
ing JavaScript source are embedded in an HTML page. When the <script> tag is

From the Library of John Jeffrey Hanson

ptg31978834

358 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

encountered, it is evaluated, and the JavaScript source is executed. This mecha-
nism is typically exploited by mashups by retrieving <script> snippets from a
server after the page has been loaded, thereby only updating the portion of the
page affected by the JavaScript source.

One reason for using on-demand JavaScript is to bypass the same-origin pol-
icy and retrieve content from multiple sites.

Listing A.2 illustrates an example of three instances of on-demand JavaScript
embedded in an HTML page.

Listing A.2 JavaScript Include Examples
 <html>
 <head>
 ...
 </head>
 <body>
 <script type="text/javascript" src="snippet1.js"></script>
 <script type="text/javascript" src="snippet2.js"></script>
 <script type="text/javascript" src="snippet3.js"></script>
 </body>
 </html>

In this example, all three instances will be evaluated and executed when the
HTML page is loaded.

On-demand JavaScript is often employed using AJAX and calls to a server
via the XMLHttpRequest object. In this scenario, a response from the server is for-
matted as JavaScript. When the browser receives the response, it evaluates it,
and the JavaScript is executed. Any actions specified in the JavaScript affecting
UI components are seen as the JavaScript is executed.

Flash

Like AJAX, Flash objects can offer similar functionality in that once down-
loaded they can communicate asynchronously with a server. Consequently,
YouTube videos can begin playing before the whole movie has been received:
The user downloads a compact flash object, which downloads a small prefix of
the video and begins playing it out while asynchronously fetching the remainder
of the video. Supporting Flash requires an appropriate Adobe plug-in to be
installed, although user penetration of this plug-in is more than 90%.

Toolkits exist allowing Internet applications to be written in a high level lan-
guage and then rendered either as Flash objects or pages with AJAX compo-
nents, meaning that it may be helpful to sometimes think of Flash and AJAX
merely as object code. AJAX apps are typically easier for the researcher to
reverse-engineer and understand for measurement purposes than the Shock-
wave Flash (SWF) format. Currently, Flash is mostly used for rendering rich

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP APIS 359

embedded objects (video, audio, games): Few entire applications that store and
recall data are implemented in Flash.

Widgets and Gadgets

Widgets are small UI components such as snippets of HTML, dynamic Java-
Script, and embeddable widgets accessed from various sites. Metadata describ-
ing widgets and other UI components are stored within a repository or catalog
of a mashup administration framework. The metadata can then be queried and
accessed by mashup tools and developers to compose and orchestrate mashup
pages and applications.

Mashup APIs

Many APIs are emerging from which mashups are being constructed. Many
social sites use mashup techniques as models for their API offerings.

The following sections define some of the most prominent APIs in use for
mashup development today.

OpenSocial API

OpenSocial presents a unified API for building social applications with services
and artifacts served from multiple sites. The OpenSocial API relies on standard
JavaScript and HTML as the platform languages developers can use to create
applications and services that interconnect common social connections.

An extensive community of development partners is developing OpenSocial.
This community partnership is leading to a platform that exposes a common
framework by which sites can become socially enabled. Some of the sites cur-
rently supporting OpenSocial include iGoogle, Friendster, LinkedIn, MySpace,
Ning, Plaxo, Salesforce.com, and others.

Functionality and content for OpenSocial are presented as Google Gadgets.
This allows developers to exploit the toolset that Google presents for building
and deploying gadgets, such as the Google Gadget Editor, XML-based user
preferences, the Google remote content retrieval API, and the gadget sandbox.

Facebook APIs

Facebook exposes an API that embodies a platform for building applications
that execute in the Facebook web site environment for members of the Face-
book social network. The Facebook API permits applications to use the connec-
tions and profile data for Facebook users. This information enables application

From the Library of John Jeffrey Hanson

ptg31978834

360 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

developers to build applications that are, in context with the Facebook plat-
form, socially aware. The Facebook API enables applications to use profile
information and connections as a conduit for publishing to Facebook news
feeds and Facebook profile pages. Access to an individual’s profile information
and connections is contingent on the approval of a profile owner’s permission
specified in the individual’s privacy settings.

Facebook relies on an API key and application secret key to identify an
application to Facebook and to authenticate requests made within the Face-
book environment.

Amazon Associates Web Service APIs

Amazon Associates Web Service facilitates access to Amazon’s databases allow-
ing developers to take advantage of Amazon’s powerful e-commerce content
and functionality. This enables you to build your own web store to sell items
from Amazon or from your own store.

Amazon Associates Web Service provides the following primary features:

• Product catalog—Provides access to Amazon’s product database

• Customer and seller reviews—Provides access to Amazon’s customer and
seller review database

• Product images—Allows you to display product images used on
www.amazon.com

• Latest offerings—Allows access to the latest Amazon offerings, including
digital media

Flickr APIs

The API exposed by Flickr consists of a group of methods and API endpoints.
To execute functionality using the Flickr API, you need to select a request for-
mat (REST, XML-RPC, or SOAP), send a request to an endpoint specifying a
method and arguments, and handle the formatted response.

All Flickr API request formats take a list of named parameters including
method, api_key, and format.

The Flickr API methods encompass CRUD-styled (create, read, update, and
delete) functionality for accessing and manipulating such things as user photos,
authentication, blogs, contacts, favorites, groups, and others.

Available Flickr API response formats are REST (simple XML), XML-RPC,
SOAP, JSON, and PHP serialized format.

Flickr API kits are available from third parties for many different languages
including ActionScript, C, Java, .NET, Perl, PHP, Python, and Ruby.

From the Library of John Jeffrey Hanson

www.amazon.com

ptg31978834

MASHUP APIS 361

eBay APIs

eBay provides a number of APIs to interact with its product and service offer-
ings. The following briefly discusses each API:

• eBay API—Enables you to communicate directly with the eBay database in
XML format. By using the API, an application can provide a custom inter-
face, custom functionality, and other custom operations. Using the API,
you can create programs that

Submit items for listing on eBay.

Get the current list of eBay categories.

View information about items listed on eBay.

Get high bidder information for items you are selling.

Retrieve lists of items a particular user is currently selling through eBay.

Retrieve lists of items a particular user has bid on.

Display eBay listings on other sites.

Leave feedback about other users at the conclusion of a commerce
transaction.

• eBay Shopping API—Makes it easy to search for things on eBay.

• eBay Merchandising API—Provides item and product recommendations
that can be used to cross-sell and up-sell eBay items to buyers.

• eBay Trading API—Provides web service access to the eBay marketplace.
It enables third-party applications to build custom applications, tools, and
services that leverage the eBay marketplace.

• eBay Client Alerts API—Makes it easy to receive near real-time seller and
buyer alerts about events on the eBay site.

• eBay Platform Notifications—Allows an application to request that eBay
send notifications to URLs or email addresses. Notifications are triggered
by events such as the ending of a listing or the creation of a transaction.

• Research API for eBay—An API provided by a third party that allows an
application to retrieve historical eBay data.

Libraries for the eBay APIs are available for .NET, C#, ASP, VB, Java JSP,
PHP, Perl, Python, JavaScript, and Flash.

From the Library of John Jeffrey Hanson

ptg31978834

362 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

YouTube APIs

The YouTube APIs and tools enable you to integrate YouTube’s video content
and functionality into your web site, software application, or device.

Data API
The Data API lets you incorporate YouTube functionality into your own appli-
cation or web site. The Data API allows a program to perform a large subset of
the operations available on the YouTube web site. This API makes it possible to
search for videos and retrieve standard feeds. A program can also authenticate
as a user to upload videos, modify user playlists, and more.

The Data API targets developers who are accustomed to programming in
server-side languages. It is useful for developing sites or applications that have a
need for a tighter integration with YouTube. This integration could be a web
application that uploads videos to YouTube or a device or application that
embeds YouTube functionality inside another platform or application. The
Data API gives you programmatic access to videos and user information resid-
ing on the YouTube web site. This allows you to personalize your site or appli-
cation with the YouTube user’s information as well as perform actions on their
behalf, providing you have the needed authorization.

YouTube provides a group of client libraries that abstract the API into lan-
guage-specific object models.

Player APIs
The YouTube Player APIs allow you to control YouTube video playback on
your web site. The API allows you to configure settings, drive the player’s inter-
face, or build your own player controls.

The YouTube player APIs let you control how YouTube videos look. There
are two kinds of YouTube players:

• Embedded player—Can be customized and annotated with controls that
allow you to configure the player to find videos, show playlists, listen for
events, pause videos, and perform other functions.

• Chromeless player—A video container without controls. The chromeless
player is intended for developers who want to design their own video
player. Both players have the same JavaScript and ActionScript APIs.

Widgets
Widgets are UI artifacts you can embed in your web site to give it YouTube
functionality. YouTube widgets are JavaScript components that you can place in
a web page to enhance it with YouTube’s content. Widgets are well-suited for

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP EDITORS 363

users who are familiar with HTML and JavaScript, but may not be skilled at
server-side programming. Currently, YouTube offers two widgets:

• Video Bar—Allows you to add a strip of video thumbnails to a site. After
clicking on a thumbnail in the widget, a floating player opens to play the
video on your site. YouTube offers a wizard to get you started and a pro-
gramming guide to help you along the way.

• Video Search Control—Allows you to use the Google AJAX Search API to
search through YouTube’s content. The widget presents a search box that
is preconfigured with a set of tags defined by you. The search box also dis-
plays thumbnails for the video results. These videos can then be played on
the same page.

Mashup Editors

A number of powerful mashup editor environments are available in which data
and UI artifacts can be integrated (see http://blogs.zdnet.com/Hinchcliffe/?p=174).

The following sections discuss some of the more prominent mashup editor
environments currently available.

Yahoo! Pipes

Yahoo! Pipes (http://pipes.yahoo.com/pipes/) is a mashup composition environment
presented as a free online service that allows you to integrate RSS and Atom
feeds and create data mashups in a visual editor without writing code. Yahoo!
Pipes can be used to aggregate, manipulate, and integrate content from the web.

Simple data and feed sources can be combined via commands in a manner
similar to using UNIX pipes to create filtered and transformed results. Here are
a few ways Yahoo! Pipes can be used:

• Create a custom feed by combining many feeds into one and then sorting,
filtering, and translating them.

• Geocode feeds and browse the items on an interactive map.

• Remix data sources and use the Pipe to power a new application.

• Build custom vertical search pages.

• Power widgets/badges on a web site.

• Consume the output of any Pipe as RSS, JSON, KML, and other formats.

From the Library of John Jeffrey Hanson

http://blogs.zdnet.com/Hinchcliffe/?p=174
http://pipes.yahoo.com/pipes/

ptg31978834

364 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

You can use Pipes to create web projects or publish web services without
writing any actual code. You make a Pipe by dragging preconfigured modules
onto the Pipe editor’s canvas and wiring the modules together in the editor.
Each Pipe consists of multiple modules, which perform a single, specific task.
Each module has one or more input and output terminals, represented by small
circles in the editor. You wire modules together by dragging a “wire” from one
module to another module. Once the modules are wired together, the output
from one module will serve as input to another module.

Yahoo! Pipes allows you to add user-input fields to connected modules in
addition to data sources and feeds. User input fields are exposed at runtime as
form fields in which users of the Pipe can enter data.

Google Mashup Editor

Google Mashup Editor is an AJAX-based development framework and envi-
ronment that allows you to edit, compile, test, and manage mashup applica-
tions. Google Mashup Editor provides a set of tools that enable developers to
create simple web applications and mashups with Google services such as Goo-
gle Maps and Google Base.

Creating applications with Google Mashup Editor is enabled via declarative
XML tags, JavaScript, CSS, and HTML. A proprietary JavaScript API is also
available. The Google Mashup Editor allows you to create and deploy a
mashup with one tool. Debugging is provided using JavaScript debugging tools
such as Firebug.

Google Mashup Editor includes a built-in reference guide to all tags and
attributes. You can publish a finished mashup application to Google’s servers.

The primary components and functions of Google Mashup Editor are

• Editing—The editor is a browser-based text area that contains the main
<gm:page> tags. You create an application by placing HTML, CSS, Java-
Script, and GME tags between the <gm:page> tags. Any standard HTML,
CSS, or JavaScript that can be placed between the <body> and </body> tags in
an HTML document can go between the <gm:page> tags. Google Mashup
Editor provides syntax checking and highlighting. When an application is
compiled, all GME tags are transformed into JavaScript.

• Testing—A Test button is provided at the top of the Google Mashup Edi-
tor page to test an application.

• Publishing—When an application is ready to be published, you use the
Publish Project menu item to deploy the application to Google’s servers.
When you publish your application, Google Mashup Editor presents to you

From the Library of John Jeffrey Hanson

ptg31978834

MASHUP EDITORS 365

a URL where your application is hosted. You can also deploy an application
as a Google Gadget using the Submit Gadget option in Google Mashup
Editor. This creates a Google Gadget and a gadget.xml file containing set-
tings for the gadget. You can edit the gadget.xml file directly in the Editor.

• Hosting—Applications created with Google Mashup Editor are hosted by
Google. The source code and uploaded resource files are stored using the
open source project hosting feature of Google Code. When you start a new
project, Google Mashup Editor creates a new, open source repository on
Google Code to store the source files and other resources associated with
the project. The source code is created under the Apache 2.0 open source
license. You can change the license as you wish.

• Project source control—You can use the subversion repository on Google
Code to control your source code updates. Projects are accessed in Google
Code using the URL format: http://code.google.com/u/<your gmail user-
name>. The page at this URL presents a list of your projects. You can then
access any project listed to browse the files and change settings.

• Ancillary files—You can add existing ancillary resource files (HTML,
XML, CSS, and so on) to an application in Google Mashup Editor and use
the editor to edit the files.

Microsoft Popfly

Microsoft Popfly (http://www.popfly.com/) allows you to build and share mash-
ups, gadgets, and web pages. Microsoft Popfly consists of online visual tools for
building web pages and mashups and a social network where you can host,
share, rate, comment, and use mashups from other Popfly users.

Popfly is based on Microsoft’s Silverlight (http://www.microsoft.com/silverlight)
platform and offers a web programming environment and social network so
you can bring in new data sources, create new ways to display information, or
create and share Visual Studio projects.

Popfly integrates JavaScript components known as “blocks.” For presenta-
tion layer blocks, you can use AJAX, DHTML, or Silverlight (XAML). Blocks
have defined input and output parameters and operations (methods) that are
used to connect them between other blocks. Each block also has an XML meta-
data file that describes what the block does. You can find built-in tutorials on
how to build blocks directly in Popfly.

Content supported by Popfly includes JavaScript, AJAX libraries, HTML,
XHTML, CSS, WMV, WMA, MP3, Visual Studio Express projects, JPG, PNG,
GIF, and EXEs.

From the Library of John Jeffrey Hanson

http://www.popfly.com/
http://www.microsoft.com/silverlight
http://code.google.com/u/

ptg31978834

366 APPENDIX MASHUP SERVERS, TECHNOLOGIES, APIS, AND TOOLS

IBM Mashup Starter Kit

IBM Mashup Starter Kit (http://www.alphaworks.ibm.com/tech/ibmmsk) is a
Web 2.0-based mashup platform that enables access to web-based content and
data that is then used to build mashup applications. IBM Mashup Starter Kit
can combine information from databases, the web, and proprietary data
sources.

IBM Mashup Starter Kit consists of two technologies: IBM Mashup Hub
and QEDWiki. IBM Mashup Hub is a mashup server that stores data feeds
such as in RSS and ATOM. Mashup Hub can also merge, transform, filter,
annotate, or publish information in new formats. From there, QEDWiki serves
as the user interface for building mashups from the published information.

Mashup Hub and QEDWiki are web applications that manage assets such as
feeds, wiki pages, and user-specific and structured data. The user interfaces use
the Dojo toolkit and the AreaEdit WYSIWYG editor; internally, the applica-
tions use REST, AJAX, and JSON.

DreamFace Interactive

DreamFace Interactive (http://www.dreamface-interactive.com/) is an Open
Source AJAX Framework for creating Enterprise Web 2.0 applications and
mashups. The DreamFace Interactive framework allows tech-savvy business-
people to create, personalize, and share their own web applications through a
concept known as “Web Channels.” Web Channels are mini dynamic applica-
tions that incorporate DataWidgets, which use disparate data sources located
on internal systems and the Internet to display information and interact with
other DataWidgets.

Intel’s Mash Maker

Intel’s Mash Maker (http://mashmaker.intel.com/web/) is free browser exten-
sion that allows users to change web pages in place and remix them with infor-
mation from different online sources. It works with Firefox and Internet
Explorer.

Lotus Mashups

Lotus Mashups (http://www-306.ibm.com/software/lotus/products/mashups/)
is an offering from IBM that builds on the concepts of the QEDWiki mashup
tool to offer a lightweight mashup environment for building mashup applica-
tions by assembling disparate content and data. Lotus mashups uses a browser-
based environment to assemble applications from widgets. You can also use

From the Library of John Jeffrey Hanson

http://www.alphaworks.ibm.com/tech/ibmmsk
http://www.dreamface-interactive.com/
http://mashmaker.intel.com/web/
http://www-306.ibm.com/software/lotus/products/mashups/

ptg31978834

SUMMARY 367

Lotus mashups to create your own reusable and shareable widgets and browse
a centrally approved catalog of widget sources.

Summary

Numerous tools for building mashups are now available for nearly all popular
programming languages. This appendix discussed some of the current servers,
technologies, APIs, and editors available today for mashup development and
deployment.

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

369

Index

A
Abort, 201
Access control, 67
ActiveX controls, in presentation-

oriented mashup, 27
addBundlePollerListener method, 278
addInterval method, 186, 190
addServicePollerListener method, 123
addTask method, 193
addTimeSeriesChangeListener method, 186
Administration consoles, 134
ADO.NET Data Services, 88
Adobe AIR, 341–342
Adobe Flex, 88
ADP Employease HR Management, 94
AJAX (asynchronous JavaScript and

XML), 29, 35–36, 232
advantages of, 59–60, 353–354
described, 87, 353
disadvantages of, 60–61, 354–355
libraries in, 87–88

AJAX front-controller servlet, 237–239
ajax.js script, 233–234
ajaxGet method, 243–247
ajaxSyncRequest function, 234
Alerter mashup pattern, 175–176
Alerts, 171–172
Amanda Enterprise, 317
Amazon Associates Web Service, 360
Amazon S3, 317
Android platform, 333

applications for, 334
architecture of, 334
developing applications for, 335

AOL Open Authentication API, 94
Apache Felix, 90, 106

API key, presenting, 241–242
API providers, 55–56, 169

registering with, 93–94
APIs, 102–103

list of, 359–363. See also Service APIs
APML (Attention Profiling Markup

Language), 20
Aptana Studio, 88
Arrowpointe Maps, 317
ASP.NET Caching, 89
Asynchronous interactions, 77
Atom, 19

advantages of, 61
described, 83–85, 126–127, 356–357
disadvantages of, 62
uses of, 79

Attensa Managed RSS platform, 309–311
Audit module, implementation of, 148
Audit module factory, 145–146
Auditing, data, 130
Authentication and authorization, 205,

220–221, 325–326

B
Badges, 58, 59

in presentation-oriented mashup, 26
Bandwidth, 103
BBAuth, 67–68
Big Contacts, 318–319
Browser security sandbox, 29, 30

sidestepping, 39–40
BufferedReader class, 250
Bundle poller, 274–276

lifecycle methods for, 277–278
BundleActivator interface, 267–269

From the Library of John Jeffrey Hanson

ptg31978834

370 INDEX

BundleContext instance, 269
BundlePoller instance, 278
BundlePollerEvent object, 276
Bundling, of services, 269–271
Business intelligence (BI), 322–323
Business process management (BPM), 21,

22, 340–341
BuySAFE eCommerce Trust API, 94

C
Caching, importance of, 76
Change management, 72–73, 74
Class relations, OWL and, 126
Client-side data integration, 15, 16
Component interfaces, 137–138
Configuration management, 74, 132–134
Connected Device Configuration (CDC),

340
Connected Limited Device Configuration

(CLDC), 340
Constraints, 126
ContactsValidator class, 222, 224–226
Content internalization, testing, 91
Content providers, for mashups, 55–56
Cross-site request forgeries, 13, 208

mechanism of, 212
preventing, 211–212

Cross-site scripting, 13, 208, 211
CSS, 104

in presentation-oriented mashup, 27
Customer analysis, mashups for, 99
Customer service, mashups for, 99

D
Dapper service for API creation, 94
Data

analyzing, 322
collection of, 169, 322
dynamically generated, 209
format of, 10–11, 125
integration of, 323
management of, 322
mashing of, 34–35
mediation of, 128–130
normalization of, 76, 81, 82, 86, 94–

95, 170

portability of, 19
presentation of, 168–169
securing, 208, 217–218
structuring and managing, 125–128
transfer and reuse of, 168, 170

Data caching, 32
Data federation mashup pattern, 181–182
Data layer, 15, 16

building, 278–291
caching of, 89
data handling in, 80–86
governance of, 72
implementation of, 88–89
optimizing performance of, 76
protocols for, 61–62
reliability and stability of, 74
security for, 68–69
testing of, 92

Data layer mashup pattern, 175
Data mapping, 45
Data models, 104
Data sets, size of, 74
Data snapshots, 74, 76, 86
Data-oriented mashup domains, 5

in-process vs. out-of-process, 27
pros and cons of, 30–32
techniques for, 40–45

Debugging, 75
of presentation layer, 91–92

Definitions
of services, resources, and

components, 136
XML Schema and, 126

DELETE method, 17, 62, 138, 139
Denial of service attacks, 13
Denodo platform, 311–314
Design patterns, 11–12
Design Patterns (Gamma, Helm, Johnson

& Vlissides), 166
Development environments, 88
div element, 243
Doba eCommerce services, 94
Document Object Model (DOM), 36–37
doGet method, 260, 261
dojo, 87
DOM tree access, 67
DreamFace Interactive, 366
Dynamic deployment of services, 77

From the Library of John Jeffrey Hanson

ptg31978834

INDEX 371

Dynamic scripts, malicious, 208–210
Dynamic service, 75
dynamicallyInvokeService method, 273,

274

E
eBay APIs, 361
Eclipse, 88
Eclipse Equinox, 89
Economic analysis, mashup use in, 100
Ehcache, 90
End, 201
Enterprise information services (EIS), 21,

22
Enterprise mashups

business process management (BPM)
for, 340–341

considerations unique to, 6–8, 54–55
dynamic nature of, 324–325
environment for, 324–325
extensibility of, 326
infrastructure of, 8–9, 54
infrastructure management for, 7, 54
and mobile computing, 331–340
performance and availability issues,

326
planning of, 325
problem solving using, 322–324
social platforms and, 326–331
types of, 5
uses of, 321

Error handling, testing, 91
Event firing, 276–277
Event manager, command-line, 152

implementation of, 154–158
output from, 153

Event manager factory, 153–154
Event protocol adapter, 158–162
execute method, 193, 197, 266

F
Facebook, 327
Facebook APIs, 330, 359–360
Feed factory mashup pattern, 179–180
Feeds, 132–133

Fiddler, 92
Fielding, Roy Thomas, 17, 138
fieldNames method, 224, 226
FileSystemResourceCache, 288
Financial analysis and reporting, mashups

for, 98
Firebug, 91
fireBundleAdded method, 276
fireBundleChanged method, 276
fireBundleRemoved method, 276
Flakes, 58, 59
Flash

components, in presentation-oriented
mashup, 27

CS3 Professional, 342
described, 358–359

Flickr APIs, 360
FlowUI RIA Enterprise Mashup

Framework, 314–317
Form validation, 228–232
FriendFeed, 327
Friendster developer platforms, 329–330
Front controller servlet, 237–239,

260–263
FrontController class, 226–227

G
Gadgets, 58, 59, 359

in presentation-oriented mashup, 26
Gamma, Erich, 165
GET method, 17, 62, 138, 139
GET request, 249–250
getInstance method, 280
getPeriod method, 188
getTask method, 193
getTasknames method, 193
getValue method, 188
Google AJAX Feed API, 94
Google Apps user provisioning, 94
Google Calendar, 51
Google G1, 331
Google Gears, 342
Google map

interfacing with, 263–266, 296–298
retrieving, 50, 242–249

Google Mashup Editor, 88, 364–365

From the Library of John Jeffrey Hanson

ptg31978834

372 INDEX

Governance
of data layer, 72, 134
framework for, 135
importance of, 70–71, 136–137
of presentation layer, 71–72
of process layer, 72–73
of security, 134–136
tools for, 71

GRDDL (Gleaning Resource Descriptions
from Dialects of Languages), 85–86

H
hCard microformat, 79
HEAD method, 17, 138, 139
Helm, Richard, 165
Hibernate, 88
Hierarchies, RDF Schema and, 126
HTML

described, 351–352
in presentation-oriented mashup, 27
sanitizing, 217–218
and special characters, 209

HttpURLConnection class, 249
Human resources, mashups for, 99
Hybrid mashups, 46

desktop/web, 341–342

I
iBatis, 88
IBM Mashup Starter, 366
Identity

management, 67–68
secure storage of, 68–69

iframe
code for swapping, 67
example of, 218
securing, 218–220

In-process data-oriented mashups, 27
data flow in, 31
mashing data in, 40–41
mashing JSON data in, 42–44
mashing XML data in, 41–42
pros and cons of, 30–31

index.jsp listing, 234–236
initialize method, 193, 197

Input, securing data, 208, 217
Input validation

framework for, 222–232
testing, 91

installService method, 114
Instrumentation, of services, 76
Intel Mash Maker, 366
Intelligence gathering, mashup use in, 100
Interfaces

component, 137–138
resource, 138–139
service, 137–138

Interval interface, 187
IntervalAdded method, 189
Inventory control, mashups for, 98
invokeService method, 115–116
iPhone, 331
iPhone OS, 335

architecture of, 336
compatibilities of, 337
described, 335–336
developing applications for, 337

Isolation, of transactions, 74
Issue management, 74
IT Asset Management, 21, 22
IT departments, mashup use by, 99

J
JackBe Presto, 88, 293–296
Java applets, in presentation-oriented

mashup, 27
Java J2ME (Micro Edition)

architecture of, 339
described, 338–339
developing applications for, 339–340

Java Management Extensions (JMX),
105

Java.util.Map interface, 200
Java.util.Properties instance, 200
JavaScript

compressing, 76
editors for, 88
on-demand, 26, 39–40, 213–214,

357–358
testing performance of, 91
validation of, 228–232

From the Library of John Jeffrey Hanson

ptg31978834

INDEX 373

JavaScript snippets, in presentation-
oriented mashup, 26

JBoss Cache, 89
Jena, 94–95
Johnson, Ralph, 165
jQuery, 87
JSON (JavaScript Object Notation), 20,

81
advantages of, 61
data conversion to, 95–96
described, 38–39, 127, 357
disadvantages of, 62
example object in, 214, 216
with padding (JSONP), 39–40
processing, 42–44
securing, 214–217, 232–239
uses of, 78–79

JSON hijacking, 13
JSON.parse method, 236
JsUnit, 92
JsUnit 1.3, 92

K
Kapow Mashup Server, 305–307,

348–351
Kerberos, 326
Kernels, OSGi

class structure of, 107
daemon for, 106–109
embedded, 252
event listener support in, 123
event-firing methods in, 121–122
initializing, 252–254
lifecycle methods of, 113–114, 122,

254–255
operation of, 251
service deployment methods of,

114–115
service invocation method for,

115–116
service methods of, 111–112
service polling in, 116–120
starting, 251–254, 255
stopping, 255, 256–260
structure of, 109–111

Knoplerfish, 90

L
LatitudeLongitude class, 249
Liberty Alliance, 205
Lifecycle methods, 277–278
LinkedIn, 327
Listing, of documents, 49
load function, 242–243
Load testing, 73

of UI artifacts, 75
Location data, getting, 247–249
locationToLatLong method, 263
Logging, data, 130
Look-and-feel, 104

consistency of, 103
Lotus Mashups, 366–367

M
ManagementEventSource interface, 151
MapQuest, 317
Marketing, use of mashups by, 323
Mashup Hub, 366
Mashup infrastructure

building foundation of, 251–255
described, 97, 105
foundation of, 104–123
functions of, 97–98
OSGi implementation of, 104–106,

109–123
Mashup pages, 133
Mashup Patterns (Ogrinz), 165, 177
Mashup servers, 345–351
MashupMaker, 88
Mashups

ad hoc nature of, 2
administration consoles, 134
APIs for, 102–103, 359–363
benefits of, 1
building process for, 93–96
business applications of, 21–22. See

also Enterprise mashups
client execution environments for,

57–58
components of, 5, 170–171
core activities of, 167–172
data layer of. See Data layer
design tips for, 103–104

From the Library of John Jeffrey Hanson

ptg31978834

374 INDEX

Mashups (continued)
determining technical domain for,

25–28
developing uses for, 101–102
design patterns for, 11–12
development environments for, 88
editors for, 363–367
emerging standards in, 18–21
ensuring stability and reliability of,

73–75
etymology of term, 1
example architecture of, 3–4
function of, 97–98
governance of, 70–73, 134–137
hybrid, 46
implementation strategy for, 86–90
information sources for, 102
infrastructure of. See Mashup

infrastructure
management and monitoring of,

130–132
optimizing performance of, 75–77
patterns for. See Patterns
preparing for, 6
presentation layer of. See Presentation

layer
process layer of. See Process layer
protocol agnosticity of, 57–58
requirements and constraints of, 6,

55–63
sample implementation of, 47–52
scalability of, 8
security for, 7–8, 54, 64–70, 221–240,

325–326
style for, 28–46
technologies used in, 2, 5, 351–359
testing issues for, 8, 54–55
user interface artifacts in, 34, 58–59,

75, 93–94
uses of, 98–101
visual vs. nonvisual, 3

Maven POM file, 269–271
MediateMessage method, 142
Mediation

auditing, 130
framework for, 129, 139–140
functions of, 128–129

logging, 130
managing flows and configurations, 133

Mediator, implementation of, 143–145
Mediator factory, 142–143
Mediator interface, 143
Message mediator client, 140–142
Message-level security, 205
Metadata, 10, 132, 171
Microformats, 10, 19, 79–80, 126
Microsoft Managed Services Engine, 90
Microsoft Popfly, 88, 365
Mobile computing

devices for, 331–332
importance of, 331
mashup design for, 332–333
platforms for, 333–340

Modular service design, 74
MOM (Message-Oriented Middleware),

171, 172
monitorEvents method, 152
Monitoring

framework for, 131, 151–162
importance of, 130
performance, 73, 77, 131–132

MooTools, 88
MyOpenID.com, 221
MySpace, 327

application platform of, 330–331

N
Name property, 197
National digital forecast database, 94
.NET Compact Framework, 337–338
Notifications, 171–172

O
OASIS, 205
OAuth, 21, 68, 220
Observation, patterns for, 169
Ogrinz, Michael, 165, 177
On-demand JavaScript, 39–40

described, 357–358
in presentation-oriented mashup, 26
securing, 213–214
vulnerabilities of, 213

From the Library of John Jeffrey Hanson

ptg31978834

INDEX 375

Open SAM (Open Simple Application
Mashups), 19

Open Web Application Security Project, 205
OpenID, 20, 68, 220–221
OpenSocial API, 18–19, 328–329, 359
OPML (Outline Processor Markup

Language), 19–20
Oracle E-Business Application Suite, 298
OSCache, 89
OSGi Service Platform, 104

benefits of, 106
described, 104–105
functions of, 106, 251
kernels in, 106–109, 251

Out-of-process data-oriented mashups, 27
brute-force data conversion in, 44
data flow in, 32
data mapping in, 45
pros and cons of, 31–32
semantic mapping in, 45

Output encoding, 209

P
Patterns, 165

application of, 183–201
history of, 165–166
importance of, 166–167
standard format of, 166
types of, 172–183

Payload size, 76
Pear DB_DataObject, 88
Pentaho Google Maps Dashboard,

296–298
Performance monitoring, 73, 77,

131–132, 326
Personnel recruitment, mashups for, 99
Pipes and filters mashup pattern, 181
PKI, 326
Platform as a Service (PaaS), 301
Plaxo, 327
Plug-ins, specifying, 271
Pools, managing, 76
Portable Contacts specification, 19, 329
POST method, 17, 62, 138, 139
POX (Plain Old XML). See XML

(eXtensible Markup Language)

Presentation layer, 14
API providers for, 55–56
building, 241–250
content providers for, 55–56
data handling in, 77–80
debugging of, 91–92
governance of, 71–72
implementation of, 87–88
optimizing performance of, 75–76
reliability and stability of, 73–74
security for, 66–68
testing of, 91

Presentation logic, 104
Presentation layer mashup pattern,

173–174
Presentation-oriented mashup domains,

5, 25–27
performance of, 29
pros and cons of, 28–30
sample implementation of, 47–52
security issues of, 29–30
techniques for, 33–40

Presto (JackBe), 88, 293–296
Presto Mashup Server, 345–346
Process layer, 15–17

building, 256–278
data handling in, 86
governance of, 72–73
implementation of, 89–90
optimizing performance of, 76–77
reliability and stability of, 74–75
security for, 69–70
testing of, 92–93

Process layer mashup pattern, 174–175
Process-oriented mashup domains, 5, 28

architecture of, 45
flow of processes and services in, 33
pros and cons of, 32–33
techniques for, 45

ProcessInboundMessage, 150
Protocol adapter, 158–162
Protocol agnosticity, 57–58
prototypejs library, 87
Publishing, 167
Purchasing predictions, mashups for,

98
PUT method, 17, 62, 138, 139

From the Library of John Jeffrey Hanson

ptg31978834

376 INDEX

Q
QEDWiki, 366
Queries, SPARQL and, 126

R
R&D, mashup use by, 99
RDF Schema (RDFS), 10, 126
RDFTransformModule, 150
Redfin, 319–320
registerService method, 269
Regression testing, 73
Relationships, RDF and, 126
Release management, 74
removeBundlePollerListener method, 278
removeServicePollerListener method, 123
removeTimeSeriesChangeListener

method, 186
Representational State Transfer (REST)

model, 17–18, 86, 138–139
described, 355–356
interactions in, 62–63
using, 47

Research, mashups for, 98
Resource cache

HTTP adapter for, 286–288
methods for, 279–286
public interface for, 279

Resource Description Framework (RDF),
10, 20, 126

converting to JSON, 95–96
described, 356
normalizing data to, 94–95
as universal data model, 80–81

ResourceAdapter class, 286, 288
Resources

implementation of, 289–291
serialization of, 288–289

Reuse, 103, 168, 170
Rogue Wave HydraSCA, 90
RSS, 19, 171

advantages of, 61
code for element containing feed, 50,

52
described, 126–127, 356–357
disadvantages of, 62
uses of, 79, 81–83

Rule Interchange Format (RIF), 126
Rules, 126

S
SaaS (Software as a Service), 21, 22, 28
Sales forecasting, mashups for, 98
Salesforce AppExchange, 301–305
Salesforce.com, 317

developersource CRM services of, 94
Same-origin policy, 66
SAML tokens, 326
Scheduling, patterns for, 169
Schemas, common, 74
Screen scraping, 56–57, 355
script.aculo.us, 88
Scripting libraries, optimizing, 75
Searching, mashup pattern for, 178
Security

applying to mashup structure, 221–239
authentication and authorization, 205,

220–221, 325–326
common attack scenarios, 13
configurations, 133
importance of, 64, 325
for data layer, 68–69
ensuring, 134–136, 136–137
guidelines for, 13, 205–208
message-level, 205
methods for, 64–66, 208–221
need for, 203–204
policy for, 205
for presentation layer, 66–68
for process layer, 69–70
sandbox model of, 29, 30
standards of, 205
transport-level, 205
unique issues for enterprise mashups,

7–8, 11–12, 54
Security Assertion Markup Language

(SAML), 207
Security module factory, 146–147
Semantic mapping, 45
Semantics, 126
Serena Business Mashups, 298–301
Serializing, of results, 261–262
Server-side data integration, 15

From the Library of John Jeffrey Hanson

ptg31978834

INDEX 377

ServerPollerListener method, 116–117
Service APIs

identifying, 102–103
providers of, 55–56, 93–94
tips about, 89–90

Service cache, 262–263
Service interfaces, 137–138, 261

asynchronous, 138
Service level agreements (SLAs), 72, 137,

326
Service lifecycle, 77, 136
Service platform architecture, 47
serviceAdded method, 118
serviceChanged method, 118
ServicePoller instance, 277
serviceRemoved method, 118
Services

bundling of, 269–271
dynamically invoking logic of, 271–274
implementation of, 263–269

Session fixation, 210–211
Shipping industry, mashup use in, 100
SimpleContext class, 198–200
SimpleResource class, 291
SimpleTask class, 197–198
SimpleWorkflow class, 192, 193–197
SMTP (Simple Mail Transfer Protocol),

171, 172
SNMP (Simple Network Management

Protocol), 171–172
SOAP, 205

advantages of, 62
disadvantages of, 62

Social platforms, 326
APIs for, 328–331
importance of, 327–328
integration with, 327
listed, 327

Software
design patterns for, 11–12

Software as a service (SaaS) mashup
pattern, 182–183

SPARQL, 126
Special characters, in scripts, 209
Spring Dynamic Modules for OSGi

Service Platforms, 90
Spring Framework, 211
SQL injection, 208

Standards
emerging, 18–21
importance of, 326
security, 205
use of, 103

Stateless services, 77
Static service, 75
Super search mashup pattern, 178
SWF (Shockwave Flash), 358
Systemation Corizon, 308–309

T
Task interface, 197

implementation of, 197–198
Task-execution schedules, 169
Testing, 75, 136

of data layer, 92
load, 73, 75
of presentation layer, 91
of process layer, 92–93
regression, 73
strategy for, 90

testResultHandler function, 234
Time series mashup pattern, 176–178
TimePeriod interface, 187
TimeSeries class, 184–186

interaction with, 188–190
TimeSeriesChangedEvent object, 189
TimeSeriesChangeListener interface,

188–189, 190
TimeStamp property, 187
Transformation module, 148–150
transmitData method, 219
Transport protocol, 138
Transport-level security, 205
Triple store method, 81
Trucking industry, mashup use in, 100
Trusted Computing Group, 205
Twitter, interfacing with, 266–267
Twitter checklist, 51
Twitter RSS feed, 51

U
UI artifact mashup pattern, 172–173
UI artifacts, 58–59

assembly of, 171

From the Library of John Jeffrey Hanson

ptg31978834

378 INDEX

UI artifacts (continued)
load testing of, 75
mashing of, 34
providers of, 93–94

uninstallService method, 114
Unitask Object Migration Manager

(OMM), 298, 299
User interfaces

artifacts in. See UI artifacts
component interfaces, 137–139
protocol agnosticity, 57–58

USPS Web Tools, 94

V
validate method, 224, 226
ValidateFormInput function, 232
Validator interface, 222, 224
ValidatorFactory class, 223–224
Venkman, 91
Visual Studio, 338
Vlissides, John, 166

W
W3C, 205
Web, evolution of, 1, 2
Web Ontology Language (OWL), 10,

126
Web Service Interoperability, 205
Widgets, 58, 59, 359

management of, 133
in presentation-oriented mashup, 26

Windows Gadgets, 342
Windows Mobile

architecture of, 338
described, 337
developing applications for, 337–

338
Workflow

sample of, 200–201
testing of, 201–202

Workflow framework, 190–191
Workflow interface, 192–193

implementation of, 193–197
Workflow mashup pattern, 180–181
WorkflowContext interface, 198
WorkflowFactory class, 191–192
WS-Federation, 207

WS-SecureConversation, 207
WS-SecurePolicy, 207
WS-Security (Web Service Security), 21,

205–206
WS-Trust, 207
WSO2 Mashup Server, 346–348
WSO2 Web Services Framework for PHP,

90
WSO2 Web Services Framework for

Ruby, 90

X
XACML, 207
Xcode, 337
XHTML (eXtensible HyperText Markup

Language), 18
described, 351–352
in presentation-oriented mashup, 27

XML (eXtensible Markup Language), 10,
18, 126, 205

advantages of, 61
converting to JSON, 95–96
described, 37–38, 127, 352–353
disadvantages of, 62
parsing, 41–42
uses of, 78

XML Digital Signature, 207
XML Encryption, 207
XML Key Management (XKMS), 207
XML Schema, 126
XMLHttpRequest object, 35–36, 60,

243–246
XSLT (Extensible Stylesheet Language

Transformations), 45

Y
Yahoo! Browser-based authentication

service, 94
Yahoo! Pipes, 88, 363–364
Yahoo! User Interface Library (YUI), 87
YouTube APIs, 362–363

Z
Zend_Cache, 89
Zmanda Internet Backup to Amazon S3,

317–318

From the Library of John Jeffrey Hanson

ptg31978834

This page intentionally left blank

From the Library of John Jeffrey Hanson

ptg31978834

Indispensable Patterns and Insights
for Making Mashups Work in

Production Environments

Mashup Patterns: Designs and Examples for
the Modern Enterprise

by Michael Ogrinz
ISBN 978-0-321-57947-8 • © 2009

With the recent explosion in mashup tools and technologies, developers can
now “impose” their own APIs on everything from Web sites and RSS feeds
to Excel spreadsheets and PDF documents. Rather than passively absorb
content, they can transform the Web into their own private information
source. However, there are right and wrong ways to build enterprise
mashups. As in other areas of software development, what’s needed are
authoritative, reliable patterns. In this book, leading enterprise mashup
expert Michael Ogrinz provides them.

Ogrinz’s 50+ new patterns cover virtually every facet of enterprise mashup
development, from core functionality through integration, and beyond.
They address crucial issues such as data extraction and visualization,
reputation management, security, accessibility, usability, content migration,
load and regression testing, governance, and much more. Each pattern is
documented with a practical description, specific use cases, and insights
into the stability of mashups built with it.

Design patterns for succeeding with enterprise mashups
are one of today’s fastest-growing areas of software
development. This book

• Provides authoritative insights based on extensive
real-world experience, from of the world’s leading
innovators in enterprise mashups and integration

• Covers every part of the mashup development
lifecycle, from planning core functionality through
integration, testing, and much more

• Includes six state-of-the-art, real-world case studies,
plus a full chapter of must-avoid “anti-patterns”

informit.com/aw • informit.com/title/9780321579478
safari.informit.com • mashuppatterns.com

From the Library of John Jeffrey Hanson

ptg31978834

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

From the Library of John Jeffrey Hanson

ptg31978834

InformIT_7x9_25.qxd 11/5/07 4:34 PM Page 1

From the Library of John Jeffrey Hanson

www.informIT.com/learn

ptg31978834

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

From the Library of John Jeffrey Hanson

www.informit.com/safaritrial

ptg31978834
Your purchase of Mashups: Strategies for the Modern Enterprise includes access to
a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: JMCZYBI.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

From the Library of John Jeffrey Hanson

www.informit.com/safarifree

	Contents
	Preface
	Acknowledgments
	About the Author
	Introduction
	Web 1.0 to Web 2.0 to Web 3.0
	Overview of Mashup Technologies
	Enterprise Mashup Technological Domains
	Considerations Unique to the Enterprise Mashup Domain
	Solving Technological Problems
	Structuring Semantic Data
	Effective Design Patterns
	Unique Security Constraints
	Conceptual Layers of an Enterprise Mashup
	Presentation Layer
	Data Layer
	Process Layer

	Using REST Principles for Enterprise Mashups
	Emerging Mashup Standards
	Solving Business Problems
	Summary

	Chapter 1: Mashup Styles, Techniques, and Technologies
	Determining the Technological Domain for a Mashup
	Presentation-Oriented
	Data-Oriented
	Process-Oriented

	Choosing a Mashup Style
	Pros and Cons of Presentation-Oriented Mashups
	Pros and Cons of Data-Oriented Mashups
	Pros and Cons of Process-Oriented Mashups

	Presentation-Oriented Mashup Techniques
	Mashing Presentation Artifacts
	Mashing Presentation Data
	Using AJAX and the XMLHttpRequest Object
	Sidestepping the Browser Security Sandbox

	Data-Oriented Mashup Techniques
	Mashing Data In-Process
	Mashing Data Out-of-Process

	Process-Oriented Mashup Techniques
	Hybrid Mashups
	Implementing a Simple Mashup
	Summary

	Chapter 2: Preparing for a Mashup Implementation
	Unique Considerations for Mashups
	Determining Requirements and Constraints
	Presentation Layer
	Data Layer
	Process Layer

	Preparing Your Security Infrastructure
	Presentation Layer
	Data Layer
	Process Layer

	Preparing Your Governance Infrastructure
	Presentation Layer
	Data Layer
	Process Layer

	Preparing for Stability and Reliability
	Presentation Layer
	Data Layer
	Process Layer

	Preparing for Performance
	Presentation Layer
	Data Layer
	Process Layer

	Preparing Your Data Infrastructure
	Presentation Layer
	Data Layer
	Process Layer

	Preparing Your Implementation Strategy
	Presentation Layer
	Data Layer
	Process Layer

	Preparing a Testing and Debugging Strategy
	Presentation Layer
	Data Layer
	Process Layer

	Building a Simple Mashup
	Registering with Service-API and UI Artifact Providers
	Normalizing Data to RDF
	Converting RDF and XML to JSON

	Summary

	Chapter 3: Creating an Enterprise Mashup
	Solving Enterprise Problems with a Mashup Infrastructure
	Potential Uses of Mashups for Your Enterprise
	Uses of Mashups for Specific Enterprises
	Determining Relevant Application Patterns for Your Mashups
	Identifying Sources of Information for Your Enterprise Mashups
	Identifying Services for Your Enterprise Mashups
	Enterprise Mashup Design Tips
	Building the Foundation for an Enterprise Mashup Infrastructure
	Implementing Infrastructure Layers Using OSGi
	The Kernel Daemon
	The Mashup Infrastructure Kernel Using OSGi
	The Service Poller

	Summary

	Chapter 4: Fundamental Concerns for Enterprise Mashups
	Structuring and Managing Information
	XML
	JSON
	RSS and Atom

	Data Mediation
	Logging
	Auditing

	Management and Monitoring
	Mashup Application and Infrastructure Administration
	Managing Mashup Configurations
	Mashup Administration Consoles

	Governance in a Mashup Infrastructure
	Interfaces and APIs for Services, Resources, and UI Components
	UI Component Interfaces
	Service Interfaces
	Resource Interfaces

	Building Mediation and Monitoring Frameworks for Mashups
	The Mediation Framework
	The Monitoring Framework

	Summary

	Chapter 5: Enterprise Mashup Patterns
	An Introduction to Patterns
	The Importance of Patterns within a Mashup Infrastructure
	Core Activities of a Mashup
	Publishing and Promoting Content and Artifacts
	Semantic Formats and Patterns for Data Access and Extraction
	Semantic Formats and Patterns for Data Transfer and Reuse
	Patterns and Methods for Data Presentation
	Patterns and Methods for Scheduling and Observation
	Content Reuse with Clipping
	Normalizing Content Using Data/Content Augmentation Patterns
	Assembling a Canvas of Mashup Components
	Patterns and Purposes for Notifications and Alerts

	Types of Mashup Patterns
	UI Artifact Mashup Pattern
	Presentation Layer Mashup Pattern
	Process Layer Mashup Pattern
	Data Layer Mashup Pattern
	Alerter Pattern
	Time Series Pattern
	Super Search Pattern
	Feed Factory Pattern
	Workflow Pattern
	Pipes and Filters Pattern
	Data Federation Pattern
	Software as a Service (SaaS) Pattern

	Applying Patterns to an Enterprise Mashup Infrastructure
	Time Series Framework
	Workflow Framework

	Summary

	Chapter 6: Applying Proper Techniques to Secure a Mashup
	An Overview of Web Application Security
	The Need for Security in a Mashup
	Enterprise Mashup Security Guidelines
	Securing Input Data with Validation Techniques
	Escaping Special Characters to Avoid Dynamic Exploits
	Defending against Session Fixation
	Preventing Cross-Site Request Forgery Attacks
	Securing On-Demand JavaScript
	Securing JSON
	Sanitizing HTML
	Securing iframes
	Authentication and Authorization
	Applying Security to a Mashup Infrastructure
	Validation Framework
	Secure JSON Framework

	Summary

	Chapter 7: Step-by-Step: A Tour through a Sample Mashup
	Building the Mashup Presentation Layer
	Building the Mashup Infrastructure Foundation
	Starting the OSGi Kernel
	OSGi Kernel Initialization
	OSGi Kernel Lifecycle

	Building the Mashup Process Layer
	OSGi Kernel Service Methods
	Front Controller Servlet and the Service Cache
	Service Implementations
	Bundling Services
	Dynamically Invoking Service Logic
	The Bundle Poller

	Building the Mashup Data Layer
	The Resource Cache
	The Resource Cache HTTP Adapter

	Summary

	Chapter 8: Commercial Mashups and Tools for Building Mashups
	Tools for Building Mashups
	JackBe Presto Enterprise Mashup Platform
	Pentaho Google Maps Dashboard
	Serena’s Business Mashups for Oracle
	Salesforce AppExchange
	Kapow Mashup Server
	Systemation Corizon
	Attensa Managed RSS Platform
	Denodo Platform
	FlowUI RIA Enterprise Mashup Framework

	Commercial Mashups
	Arrowpointe Maps
	Zmanda Internet Backup to Amazon S3
	Big Contacts
	Redfin

	Summary

	Chapter 9: Mashup Forecasts and Trends
	Solving Problems with Enterprise Mashups
	Building an Open, Agile Mashup Environment
	Enterprise Mashup Environment Considerations
	OpenSocial, Facebook, MySpace, and Other Social Platforms

	Mobile and SDK-Related Mashups
	Android Platform
	iPhone OS
	Windows Mobile
	Java J2ME

	Business Process Management for Mashups
	Desktop/Web Hybrid Mashups
	Adobe AIR
	Google Gears
	Windows Gadgets

	Summary

	Appendix: Mashup Servers, Technologies, APIs, and Tools
	Mashup Servers
	Presto Mashup Server
	WSO2 Mashup Server
	Kapow Mashup Server

	Mashup Technologies and Techniques
	HTML/XHTML
	XML
	AJAX
	Screen Scraping
	REST
	RDF
	RSS and Atom
	JSON
	On-Demand JavaScript
	Flash
	Widgets and Gadgets

	Mashup APIs
	OpenSocial API
	Facebook APIs
	Amazon Associates Web Service APIs
	Flickr APIs
	eBay APIs
	YouTube APIs

	Mashup Editors
	Yahoo! Pipes
	Google Mashup Editor
	Microsoft Popfly
	IBM Mashup Starter Kit
	DreamFace Interactive
	Intel’s Mash Maker
	Lotus Mashups

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

